515
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Anti-Inflammatory and Antinociceptive Effects of Boesenbergia rotunda Polyphenol Extract in Diabetic Peripheral Neuropathic Rats

, & ORCID Icon
Pages 779-788 | Published online: 24 Mar 2022

References

  • Song P, Sun C, Li J, et al. Tiliacora triandra extract and its major constituent attenuates diabetic kidney and testicular impairment by modulating redox imbalance and pro-inflammatory responses in rats. J Sci Food Agric. 2021;101:1598–1608. doi:10.1002/jsfa.10779
  • International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels: IDF; 2019:9.
  • Makinde EA, Radenahmad N, Adekoya AE, Olatunji OJ. Tiliacora triandra extract possesses antidiabetic effects in high fat diet/streptozotocin-induced diabetes in rats. J Food Biochem. 2020;44(6):e13239. doi:10.1111/jfbc.13239
  • Olatunji OJ, Zuo J, Olatunde OO. Securidaca inappendiculata stem extract confers robust antioxidant and antidiabetic effects against high fructose/streptozotocin induced type 2 diabetes in rats. Exploration of bioactive compounds using UHPLC-ESI-QTOF-MS. Arch Physiol Biochem. 2021. doi:10.1080/13813455.2021.1921811
  • Pang X, Makinde EA, Eze FN, Olatunji OJ. Securidaca inappendiculata polyphenol rich extract counteracts cognitive deficits, neuropathy, neuroinflammation and oxidative stress in diabetic encephalopathic rats via p38 MAPK/Nrf2/HO-1 pathways. Front Pharmacol. 2021;12:737764. doi:10.3389/fphar.2021.737764
  • Zimath PL, Dalmagro AP, Mota da Silva L, Malheiros A, Maria de Souza M. Myrsinoic acid B from Myrsine coriacea reverses depressive-like behavior and brain oxidative stress in streptozotocin-diabetic rats. Chem Biol Interact. 2021;347:109603. doi:10.1016/j.cbi.2021.109603
  • Olatunji OJ, Chen H, Zhou Y. Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation. Biomed Pharmacother. 2018;102:1145–1151. doi:10.1016/j.biopha.2018.03.037
  • Zhang YJ, Liu FR. Effectiveness of acupuncture for treatment of diabetic peripheral neuropathy. Medicine. 2019;98:e17282. doi:10.1097/MD.0000000000017282
  • Iqbal Z, Azmi S, Yadav R, et al. Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther. 2018;40(6):828–849. doi:10.1016/j.clinthera.2018.04.001
  • Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci. 2020;27(9):2410–2419. doi:10.1016/j.sjbs.2020.05.005
  • Shoaib A, Dixit RK, Ganash M, Barreto G, Ashraf GM, Siddiqui HH. Beneficial effects of n-hexane bark extract of Onosma echioides L. on diabetic peripheral neuropathy. J Cell Biochem. 2019;120:16524–16532. doi:10.1002/jcb.28912
  • Alleman CJ, Westerhout KY, Hensen M, et al. Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: a review of the literature. Diabetes Res Clin Pract. 2015;109:215–225. doi:10.1016/j.diabres.2015.04.031
  • Bril V. Treatments for diabetic neuropathy. J Peripher Nerv Syst. 2012;17:22–27. doi:10.1111/j.1529-8027.2012.00391.x
  • Saah S, Siriwan D, Trisonthi P. Biological activities of Boesenbergia rotunda parts and extracting solvents in promoting osteogenic differentiation of pre-osteoblasts. Food Bio sci. 2021;41:101011. doi:10.1016/j.fbio.2021.101011
  • Kanchanapiboon J, Kongsa U, Pattamadilok D, et al. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. J Ethnopharmacol. 2020;261:113193. doi:10.1016/j.jep.2020.113193
  • Chatsumpun N, Sritularak B, Likhitwitayawuid K. New biflavonoids with alpha-glucosidase and pancreatic lipase inhibitory activities from Boesenbergia rotunda. Molecules. 2017;22:1862. doi:10.3390/molecules22111862
  • Ruttanapattanakul J, Wikan N, Okonogi S, et al. Boesenbergia rotunda extract accelerates human keratinocyte proliferation through activating ERK1/2 and PI3K/Akt kinases. Biomed Pharmacother. 2021;133:111002. doi:10.1016/j.biopha.2020.111002
  • Mohan S, Hobani YH, Shaheen E, et al. Ameliorative effect of Boesenbergin A, a chalcone isolated from Boesenbergia rotunda (Fingerroot) on oxidative stress and inflammation in ethanol-induced gastric ulcer in vivo. J Ethnopharmacol. 2020;261:113104. doi:10.1016/j.jep.2020.113104
  • Nguyen MTT, Nguyen HX, Dang PH, et al. dimeric metabolites from Boesenbergia rotunda and their antiausterity activities against the PANC-1 human pancreatic cancer cell line. Phytochemistry. 2021;183:112646. doi:10.1016/j.phytochem.2020.112646
  • Potipiranun T, Adisakwattana S, Worawalai W, Ramadhan R, Phuwapraisirisan P. Identification of pinocembrin as an anti-glycation agent and alpha-glucosidase inhibitor from fingerroot (Boesenbergia rotunda): the tentative structure-activity relationship towards MG-trapping activity. Molecules. 2018;23:3365. doi:10.3390/molecules23123365
  • Raish M, Ahmad A, Bin Jardan YA, et al. Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats. Biomed Pharmacother. 2022;145:112412. doi:10.1016/j.biopha.2021.112412
  • Balaha M, Kandeel S, Kabel A. Phloretin either alone or in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats. Biomed Pharmacother. 2018;101:821–832. doi:10.1016/j.biopha.2018.02.135
  • Kabir MT, Tabassum N, Uddin MS, et al. Therapeutic potential of polyphenols in the management of diabetic neuropathy. Evid Based Complement Alternat Med. 2021;2021:9940169. doi:10.1155/2021/9940169
  • Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci. 2016;8:33–42. doi:10.1016/j.cofs.2016.02.002
  • Erukainure OL, Oyebode OA, Ijomone OM, Chukwuma CI, Koorbanally NA, Islam MS. Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine modulates glucose homeostasis by enhancing insulin secretion and inhibiting redox imbalance in a rat model of diabetes induced by high fructose diet and streptozotocin. J Ethnopharmacol. 2019;237:159–170. doi:10.1016/j.jep.2019.03.039
  • Ibrahim MA, Habila JD, Koorbanally NA, Islam MS. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J Ethnopharmacol. 2016;183:103–111. doi:10.1016/j.jep.2016.02.018
  • Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int. 2015;2015:515042. doi:10.1155/2015/515042
  • Fajrin FA, Nugroho AE, Nurrochmad A, Susilowati R. Ginger extract and its compound, 6-shogaol, attenuates painful diabetic neuropathy in mice via reducing TRPV1 and NMDAR2B expressions in the spinal cord. J Ethnopharmacol. 2020;249:112396.
  • Jain D, Bansal MK, Dalvi R, Upganlawar A, Somani R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med. 2014;12(1):35–41. doi:10.1016/S2095-4964(14)60001-7
  • Saraswat N, Sachan N, Chandra P. Anti-diabetic, diabetic neuropathy protective action and mechanism of action involving oxidative pathway of chlorogenic acid isolated from Selinum vaginatum roots in rats. Heliyon. 2020;6(10):e05137. doi:10.1016/j.heliyon.2020.e05137
  • Pandhare RB, Sangameswaran B, Mohite PB, Khanage SG. Attenuating effect of seeds of Adenanthera pavonina aqueous extract in neuropathic pain in streptozotocin-induced diabetic rats: an evidence of neuroprotective effects. Rev Bras Farmacogn. 2012;22(2):428–435. doi:10.1590/S0102-695X2012005000008
  • Abo-Salem OM, Ali TM, Harisa GI, Mehanna OM, Younos IH, Almalki WH. Beneficial effects of (-)-epigallocatechin-3-O-gallate on diabetic peripheral neuropathy in the rat model. J Biochem Mol Toxicol. 2020;34:e22508. doi:10.1002/jbt.22508
  • Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother. 2022;145:112395. doi:10.1016/j.biopha.2021.112395
  • Baka P, Escolano-Lozano F, Birklein F. Systemic inflammatory biomarkers in painful diabetic neuropathy. J Diabetes Complicat. 2021;35:108017. doi:10.1016/j.jdiacomp.2021.108017
  • Sun JJ, Tang L, Zhao XP, Xu JM, Xiao Y, Li H. Infiltration of blood-derived macrophages contributes to the development of diabetic neuropathy. J Immunol Res. 2019;2019:7597382. doi:10.1155/2019/7597382
  • Okdahl T, Brock C, Fløyel T, et al. Increased levels of inflammatory factors are associated with severity of polyneuropathy in type 1 diabetes. Clin Endocrinol. 2020;93:419–428. doi:10.1111/cen.14261
  • Déciga-Campos M, Mata R, Rivero-Cruz I. Antinociceptive pharmacological profile of Dysphania graveolens in mouse. Biomed Pharmacother. 2017;89:933–938. doi:10.1016/j.biopha.2017.02.096
  • Gong LJ, Wang XY, Gu WY, Wu X. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea. J Neuroinflammation. 2020; 17: 337.
  • Li C, Tang B, Feng Y, et al. Pinostrobin exerts neuroprotective actions in neurotoxin-induced Parkinson’s disease models through Nrf2 induction. J Agric Food Chem. 2018;66(31):8307–8318. doi:10.1021/acs.jafc.8b02607
  • Patel NK, Jaiswal G, Bhutani KK. A review on biological sources, chemistry and pharmacological activities of pinostrobin. Nat Prod Res. 2016;30:2017–2027. doi:10.1080/14786419.2015.1107556