55
Views
0
CrossRef citations to date
0
Altmetric
Musculoskeletal Pain/Rehabilitation

Disrupted Resting-State Functional Connectivity and Effective Connectivity of the Nucleus Accumbens in Chronic Low Back Pain: A Cross-Sectional Study

, , , , , ORCID Icon, , & show all
Pages 2133-2146 | Received 14 Feb 2024, Accepted 28 May 2024, Published online: 16 Jun 2024

References

  • Buchbinder R, van Tulder M, Öberg B, et al. Low back pain: a call for action. Lancet. 2018;391(10137):2384–2388. doi:10.1016/s0140-6736(18)30488-4
  • Tu Y, Fu Z, Mao C, et al. Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nat Commun. 2020;11(1):3948. doi:10.1038/s41467-020-17788-z
  • Knezevic NN, Candido KD, Vlaeyen JWS, Van Zundert J, Cohen SP. Low back pain. Lancet. 2021;398(10294):78–92. doi:10.1016/s0140-6736(21)00733-9
  • Murray K, Lin Y, Makary MM, Whang PG, Geha P. Brain structure and function of chronic low back pain patients on long-term opioid analgesic treatment: a preliminary study. Article. Molecular Pain. 2021;171744806921990938. doi:10.1177/1744806921990938
  • Wu A, March L, Zheng X, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann Translat Med. 2020;8(6):299.
  • Zhao X, Boersma K, Gerdle B, Molander P, Hesser H. Fear network and pain extent: interplays among psychological constructs related to the fear-avoidance model. J Psychosom Res. 2023;167:111176. doi:10.1016/j.jpsychores.2023.111176
  • Martinez-Pozas O, Sánchez-Romero EA, Beltran-Alacreu H, et al. Effects of orthopedic manual therapy on pain sensitization in patients with chronic musculoskeletal pain. Am J Phys Med Rehabilit. 2023;102(10):879–885. doi:10.1097/phm.0000000000002239
  • Cuenca-Zaldívar JN, Fernández-Carnero J, Sánchez-Romero EA, et al. Effects of a therapeutic exercise protocol for patients with chronic non-specific back pain in primary health care: a single-group retrospective cohort study. J Clin Med. 2023;12(20):6478. doi:10.3390/jcm12206478
  • Chuhuai Wang M, Li Y, Zhang Z. Motor control exercise modulates the neural plasticity of the default mode network in patients with chronic low back pain. Pain Physician. 2024;27(1):E55–E64.
  • Ballestra E, Battaglino A, Cotella D, Rossettini G, Romero EAS, Villafañe H. Do patients’ expectations influence conservative treatment in Chronic Low Back Pain? A narrative review. Retos. 2022;46:395–403. doi:10.47197/retos.v46.93950
  • Romero ESA, Lim T, Villafañe JH, et al. The influence of verbal suggestion on post-needling soreness and pain processing after dry needling treatment: an experimental study. Int J Environ Res Public Health. 2021;18(8):4206. doi:10.3390/ijerph18084206
  • Malfliet A, Lluch Girbés E, Pecos‐Martin D, Gallego‐Izquierdo T, Valera‐Calero A. The influence of treatment expectations on clinical outcomes and cortisol levels in patients with chronic neck pain: an experimental study. Pain Pract. 2019;19(4):370–381. doi:10.1111/papr.12749
  • Amaro-Diaz L, Montoro CI, Fischer-Jbali LR, Galvez-Sanchez CM. Chronic pain and emotional stroop: a systematic review. J Clin Med. 2022;11(12):3259. doi:10.3390/jcm11123259
  • Vachon-Presseau E, Tétreault P, Petre B, et al. Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain. 2016;139(7):1958–1970. doi:10.1093/brain/aww100
  • Ding Y-D, Chen X, Chen Z-B, et al. Reduced nucleus accumbens functional connectivity in reward network and default mode network in patients with recurrent major depressive disorder. Transl Psychiatry. 2022;12(1):236. doi:10.1038/s41398-022-01995-x
  • Hu Y, Zhao C, Zhao H, Qiao J. Abnormal functional connectivity of the nucleus accumbens subregions mediates the association between anhedonia and major depressive disorder. BMC Psychiatry. 2023;23(1):282. doi:10.1186/s12888-023-04693-0
  • Serafini RA, Pryce KD, Zachariou V. The mesolimbic dopamine system in chronic pain and associated affective comorbidities. Biol Psychiatry. 2020;87(1):64–73. doi:10.1016/j.biopsych.2019.10.018
  • Salgado S, Kaplitt MG. The nucleus accumbens: a comprehensive review. Stereotact Function Neurosurg. 2015;93(2):75–93. doi:10.1159/000368279
  • Löffler M, Levine SM, Usai K, et al. Corticostriatal circuits in the transition to chronic back pain: the predictive role of reward learning. Cell Rep Med. 2022;3(7):100677. doi:10.1016/j.xcrm.2022.100677
  • Makary MM, Polosecki P, Cecchi GA, et al. Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain. Proc Natl Acad Sci. 2020;117(18):10015–10023. doi:10.1073/pnas.1918682117
  • Rizvi SJ, Gandhi W, Salomons T. Reward processing as a common diathesis for chronic pain and depression. Review. Neurosci Biobehav Rev. 2021;127:749–760. doi:10.1016/j.neubiorev.2021.04.033
  • Noursadeghi E, Haghparast A. Modulatory role of intra-accumbal dopamine receptors in the restraint stress-induced antinociceptive responses. Article. Brain Res Bull. 2023;195:172–179. doi:10.1016/j.brainresbull.2023.03.003
  • Chae Y, Park HJ, Lee IS. Pain modalities in the body and brain: current knowledge and future perspectives. Neurosci Biobehav Rev. 2022;139:104744. doi:10.1016/j.neubiorev.2022.104744
  • Gilam G, Gross JJ, Wager TD, Keefe FJ, Mackey SC. What is the relationship between pain and emotion? Bridging constructs and communities. editorial material. Neuron. 2020;107(1):17–21. doi:10.1016/j.neuron.2020.05.024
  • Barroso J, Branco P, Apkarian AV. Brain mechanisms of chronic pain: critical role of translational approach. Transl Res. 2021;238:76–89. doi:10.1016/j.trsl.2021.06.004
  • Yan H, Shlobin NA, Jung Y, et al. Nucleus accumbens: a systematic review of neural circuitry and clinical studies in healthy and pathological states. Review. J Neurosurg. 2022;138(2):337–346. doi:10.3171/2022.5.Jns212548
  • Li CS, Liu SF, Lu XH, Tao F. Role of descending dopaminergic pathways in pain modulation. Curr Neuropharmacol. 2019;17(12):1176–1182. doi:10.2174/1570159x17666190430102531
  • Liu R, Wang Y, Chen XY, Zhang ZF, Xiao L, Zhou Y. Anhedonia correlates with functional connectivity of the nucleus accumbens subregions in patients with major depressive disorder. Neuroimage Clin. 2021;30:102599. doi:10.1016/j.nicl.2021.102599
  • Zhao X, Yang R, Wang K, et al. Connectivity-based parcellation of the nucleus accumbens into core and shell portions for stereotactic target localization and alterations in each NAc subdivision in mTLE patients. Article. Human Brain Mapp. 2018;39(3):1232–1245. doi:10.1002/hbm.23912
  • Frässle S, Harrison SJ, Heinzle J, et al. Regression dynamic causal modeling for resting-state fMRI. Human Brain Mapp. 2021;42(7):2159–2180. doi:10.1002/hbm.25357
  • Dai PS, Zhou XY, Xiong T, et al. Altered effective connectivity among the cerebellum and cerebrum in patients with major depressive disorder using multisite resting-state fMRI. Cerebellum. 2023;22(5):781–789. doi:10.1007/s12311-022-01454-9
  • Mao CP, Wu Y, Yang HJ, et al. Altered habenular connectivity in chronic low back pain: an fMRI and machine learning study. Article. Human Brain Mapp. 2023;44(11):4407–4421. doi:10.1002/hbm.26389
  • Yilmaz H, Güler H. Can video‐assisted and three‐dimensional (3D) anatomy teaching be an alternative to traditional anatomy teaching? Randomized controlled trial on muscular system anatomy. Clin Anat. 2024;37(2):227–232. doi:10.1002/ca.24088
  • Zhang H, Xia D, Wu X, et al. Abnormal intrinsic functional interactions within pain network in cervical discogenic pain. Front Neurosci. 2021;15:671280. doi:10.3389/fnins.2021.671280
  • Xia X, Fan L, Cheng C, et al. Multimodal connectivity-based parcellation reveals a shell-core dichotomy of the human nucleus accumbens. Review. Human Brain Mapp. 2017;38(8):3878–3898. doi:10.1002/hbm.23636
  • Mao CP, Yang HJ, Yang QX, Sun HH, Zhang GR, Zhang QJ. Altered amygdala-prefrontal connectivity in chronic nonspecific low back pain: resting-state fMRI and dynamic causal modelling study. Neuroscience. 2022;482:18–29. doi:10.1016/j.neuroscience.2021.12.003
  • Kummer KK, Mitric M, Kalpachidou T, Kress M. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. Review. Int J Mol Sci. 2020;21(10):3440. doi:10.3390/ijms21103440
  • Ong WY, Stohler CS, Herr DR. Role of the prefrontal cortex in pain processing. Mol Neurobiol. 2019;56(2):1137–1166. doi:10.1007/s12035-018-1130-9
  • Gamal-Eltrabily M, Martínez-Lorenzana G, González-Hernández A, Condés-Lara M. Cortical modulation of nociception. Neuroscience. 2021;458:256–270. doi:10.1016/j.neuroscience.2021.01.001
  • Wang X-Q, Mokhtari T, Zeng Y-X, L-p Y, Hu L, Wang X-Q. The distinct functions of dopaminergic receptors on pain modulation: a narrative review. Neural Plast. 2021;2021:1–11. doi:10.1155/2021/6682275
  • Seminowicz DA, Remeniuk B, Krimmel SR, et al. Pain-related nucleus accumbens function: modulation by reward and sleep disruption. Pain. 2019;160(5):1196–1207. doi:10.1097/j.pain.0000000000001498
  • Lewis RG, Florio E, Punzo D, Borrelli E. The Brain’s Reward System in Health and Disease. Springer; 2021.
  • Martikainen IK, Nuechterlein EB, Pecina M, et al. Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J Neurosci. 2015;35(27):9957–9965. doi:10.1523/JNEUROSCI.4605-14.2015
  • Chen L, Wang J, Xia M, et al. Altered functional connectivity of nucleus accumbens subregions associates with non‐motor symptoms in Parkinson’s disease. CNS Neurosci Ther. 2022;28(12):2308–2318. doi:10.1111/cns.13979
  • Konno S-I, Sekiguchi M. Association between brain and low back pain. J Orthop Sci. 2018;23(1):3–7. doi:10.1016/j.jos.2017.11.007
  • Thompson JM, Neugebauer V. Cortico-limbic pain mechanisms. Neurosci Lett. 2019;702:15–23. doi:10.1016/j.neulet.2018.11.037
  • Baliki MN, Petre B, Torbey S, et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci. 2012;15(8):1117–1119. doi:10.1038/nn.3153
  • Martinez E, Lin HH, Zhou H, Dale J, Liu K, Wang J. Corticostriatal regulation of acute pain. Front Cell Neurosci. 2017;11:146. doi:10.3389/fncel.2017.00146
  • Park SH, Baker AK, Krishna V, Mackey SC, Martucci KT. Altered resting-state functional connectivity within corticostriatal and subcortical-striatal circuits in chronic pain. Sci Rep. 2022;12(1):12683. doi:10.1038/s41598-022-16835-7
  • Liu N, Li Y, Hong Y, et al. Altered brain activities in mesocorticolimbic pathway in primary dysmenorrhea patients of long-term menstrual pain. Front Neurosci. 2023;17:1098573. doi:10.3389/fnins.2023.1098573
  • Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci. 2021;22(8):458–471. doi:10.1038/s41583-021-00468-2
  • Liu N, Huo J, Li Y, et al. Changes in brain structure and related functional connectivity during menstruation in women with primary dysmenorrhea. Article. Quant Imaging Med Surg. 2023;13(2):1071–1082. doi:10.21037/qims-22-683
  • Zhou F, Gu L, Hong S, et al. Altered low-frequency oscillation amplitude of resting state-fMRI in patients with discogenic low-back and leg pain. Article. J Pain Res. 2018;11:165–176. doi:10.2147/jpr.S151562
  • Lv Q, Wu F, Gan X, et al. The involvement of descending pain inhibitory system in electroacupuncture-induced analgesia. Review. Front Integr Neurosci. 2019;13:38. doi:10.3389/fnint.2019.00038
  • Napadow V, Sclocco R, Henderson LA. Brainstem neuroimaging of nociception and pain circuitries. Pain Rep. 2019;4(4):e745. doi:10.1097/PR9.0000000000000745
  • Van Overwalle F, Van de Steen F, Mariën P. Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cognit Affect Behav Neurosci. 2019;19(1):211–223. doi:10.3758/s13415-018-00659-y
  • Fastenrath M, Spalek K, Coynel D, et al. Human cerebellum and corticocerebellar connections involved in emotional memory enhancement. Proc Natl Acad Sci. 2022;119(41):e2204900119. doi:10.1073/pnas.2204900119
  • Wagner MJ, Luo L. Neocortex–cerebellum circuits for cognitive processing. Trends Neurosci. 2020;43(1):42–54. doi:10.1016/j.tins.2019.11.002
  • Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cognit Affect Neurosci. 2020;15(5):599–613. doi:10.1093/scan/nsaa076
  • Yoshida J, Oñate M, Khatami L, Vera J, Nadim F, Khodakhah K. Cerebellar contributions to the basal ganglia influence motor coordination, reward processing, and movement vigor. J Neurosci. 2022;42(45):8406–8415. doi:10.1523/JNEUROSCI.1535-22.2022
  • Jahn P, Deak B, Mayr A, et al. Intrinsic network activity reflects the ongoing experience of chronic pain. Sci Rep. 2021;11(1):21870. doi:10.1038/s41598-021-01340-0
  • Zhang C, Zhang Z, Li Y, et al. Alterations in functional connectivity in patients with non-specific chronic low back pain after motor control exercise: a randomized trial. Eur J Phys Rehabil Med. 2024;60(2). doi:10.23736/S1973-9087.24.08087-0
  • Groh A, Krieger P, Mease RA, Henderson L. Acute and chronic pain processing in the thalamocortical system of humans and animal models. Neuroscience. 2018;387:58–71. doi:10.1016/j.neuroscience.2017.09.042
  • Mao CP, Wilson G, Cao J, Meshberg N, Huang Y, Kong J. Abnormal anatomical and functional connectivity of the thalamo-sensorimotor circuit in chronic low back pain: resting-state functional magnetic resonance imaging and diffusion tensor imaging study. Neuroscience. 2022;487:143–154. doi:10.1016/j.neuroscience.2022.02.001
  • Riegner G, Posey G, Oliva V, Jung Y, Mobley W, Zeidan F. Disentangling self from pain: mindfulness meditation–induced pain relief is driven by thalamic–default mode network decoupling. Pain. 2023;164(2):280–291. doi:10.1097/j.pain.0000000000002731
  • Chitneni A, Rupp A, Ghorayeb J, Abd-Elsayed A. Early detection of diabetic peripheral neuropathy by fMRI: an evidence-based review. Brain Sci. 2022;12(5):557. doi:10.3390/brainsci12050557
  • Gogolla N. The insular cortex. Curr Biol. 2017;27(12):R580–R586. doi:10.1016/j.cub.2017.05.010
  • Lee J-HA, Chen Q, Zhuo M. Synaptic plasticity in the pain-related cingulate and insular cortex. Biomedicines. 2022;10(11):2745. doi:10.3390/biomedicines10112745
  • Lu C, Yang T, Zhao H, et al. Insular cortex is critical for the perception, modulation, and chronification of pain. Review. Neurosci Bull. 2016;32(2):191–201. doi:10.1007/s12264-016-0016-y
  • Wang N, Zhang Y-H, Wang J-Y, Luo F. Current understanding of the involvement of the insular cortex in neuropathic pain: a narrative review. Review. Int J Mol Sci. 2021;22(5):2648. doi:10.3390/ijms22052648
  • Bastuji H, Frot M, Perchet C, Hagiwara K, Garcia-Larrea L. Convergence of sensory and limbic noxious input into the anterior insula and the emergence of pain from nociception. Article. Sci Rep. 2018;8(1):3360. doi:10.1038/s41598-018-31781-z
  • Labrakakis C. The role of the insular cortex in pain. Int J Mol Sci. 2023;24(6):5736. doi:10.3390/ijms24065736
  • Xu H, Chen Y, Tao Y, et al. Modulation effect of acupuncture treatment on chronic neck and shoulder pain in female patients: evidence from periaqueductal gray-based functional connectivity. Article; Early Access. CNS Neurosci Ther. 2022;28(5):714–723. doi:10.1111/cns.13803
  • Lan F, Lin G, Cao G, et al. Altered intrinsic brain activity and functional connectivity before and after knee arthroplasty in the elderly: a resting-state fMRI study. Article. Front Neurol. 2020:11556028. doi:10.3389/fneur.2020.556028
  • Feng L, Wu D, Ma S, et al. Resting-state functional connectivity of the cerebellum-cerebrum in older women with depressive symptoms. Article. BMC Psychiatry. 2023;23(1):732. doi:10.1186/s12888-023-05232-7