11
Views
0
CrossRef citations to date
0
Altmetric
Review

GIRK2 and neuronal pattern of generation and settling in homozygous weaver mice

, , &
Pages 29-44 | Published online: 12 Oct 2009

References

  • Jan LY, Jan YN. Cloned potassium channels from eukaryotes and prokaryotes. Annu RevNeurosci. 1997;20:91–123.
  • Harkins AB, Fox AP. Cell death in weaver cerebellum. The Cerebellum. 2002;1:201–206.
  • Sadja R, Alagem N, Reuveny E. Gating of GIRK channels: details of an intrincate membrane-delimited signaling complex. Neuron. 2003;39:9–12.
  • Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev PhysiolBiochem Pharmacol 2002;145:47–179.
  • Kobayashi T, Ikeda K, Ichikawa T, Abe S, Togashi S, Kumanishi T. Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochem Biophys Res Commun. 1995;208:1166–1173.
  • Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+ channel proteins. Nature. 1995;374:135–141.
  • Wickman K, Karschin C, Karschin A, Picciotto MR, Clapham DE. Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4. J Neurosci. 2000;20:5608–5615.
  • Lesage F, Guillemare E, Fink M, et al. Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J Biol Chem. 1995;270:28660–28667.
  • Liao YJ, Jan YN, Jan LY. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J Neurosci. 1996;16:7137–7150.
  • Inanobe A, Yoshimoto Y, Horio Y, et al. Characterization of G-protein-gated K+ channels composed of Kir3. 2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci. 1999;19:1006–1017.
  • Kofuji P Davidson N, Lester HA. Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers. Proc Natl Acad Sci U S A. 1995;92:6542–6546.
  • Ma D, Zerangue N, Raab-Graham K, Fried SR, Jan YN, Jan LY. Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron. 2002;33:715–729.
  • Jelacic TM, Kennedy ME, Wickman K, Clapham DE. Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. J Biol Chem. 2000;275:36122–36216.
  • Cheng SV Nadeau JH, Tanzi RE, et al. Comparative mapping of DNA markers from familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17. Proc Natl Acad Sci US A. 1988;85:6032–6036.
  • Reeves RH, Crowley MR, Lorenzon N, Pavan WJ, Smeyne RJ, Goldowitz D. The mouse neurological mutant weaver maps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics. 1989;5:522–526.
  • Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS. A potassium channel mutation in weaver mice implicates membrane excitability in granule differentiation. Nature Genet. 1995;11:126–129.
  • Karschin C, Dissman E, Stuhmer W, Karschin A. IRK(1–3) and GIRK(1–4) inwardly rectifiying K+ channel mRNA are differentially expressed in the adult rat brain. J Neurosci. 1996;16:3559–3570.
  • Wei J, Dlouhy SR, Bayer S, et al. In situ hybridization analysis of Girk2 expression in the developing central nervous system in normal and weaver mice. J Neuropathol Exp Neurol. 1997;56(7):762–771.
  • Sekiguchi M, Nowakowski RS, Nagato Y, et al. Morphologial abnormalities in the hippocampus of the weaver mutant mouse. Brain Res. 1995;696:262–267.
  • Schein JC, Hunter DD, Roffler-Tarlov S. Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev Biol. 1998;204:432–450.
  • Savy C, Martin-Martinelli E, Simon A, et al. Altered development of dopaminergic cells in retina of weaver mice. J Comp Neurol. 1999;412:656–668.
  • Rezai Z, Yoon CH. Abnormal rate of granule cell migration in the cerebellum of weaver mutant mice. Dev Biol. 1972;29:17–26.
  • Rakic P, Sidman RL. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 1973;152:103–132.
  • Blatt BJ, Eisenman LM. A quantitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol. 1985;232:117–128.
  • Smeyne RJ, Goldowitz D. Developmental and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J Neurosci. 1989;9:1608–1620.
  • Marti J, Wills KV, Ghetti B, Bayer SA. Evidence that the loss of Purkinje cells and deep cerebellar nuclei neurons in homozygous weaver is not related to neurogenetic patterns. Int J Devi Neurosci. 2001;19:599–610.
  • Goldowitz D, Mullen RJ. Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras. J Neurosci. 1982;2:1474–1485.
  • Herrup K, Trenkner E. Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neuroscience. 1987;23:871–885.
  • Eisenman LM, Gallagher E, Hawkes R. Regionalization defects in the weaver cerebellum. J Comp Neurol. 1998;394:431–444.
  • Armstrong C, Hawkes R. Selective Purkinje cell ectopia in the cerebellum of the weaver mouse. J Comp Neurol. 2001;439:151–161.
  • Ozaki M, Hashikawa T, Ikeda K, et al. Degeneration of pontine mossy fibers during cerebellar development in weaver mutant mice. Eur J Neurosci. 2002;16:565–574.
  • Lalonde R, Strazielle C. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Research. 2007;1140:1–74.
  • Lane JD, Nadi NS, McBride WJ, Aprison MH, Kusano K. Content of serotonin, norepinephrine and dopamine in the cerebrum of the “staggerer”, “weaver” and “nervous” neurologically mutant mice. J Neurochem. 1977;29:349–350.
  • Schmidt MJ, Sawyer BD, Perry KW, Fuller RW, Foreman MM, Ghetti B. Dopamine deficiency in the weaver mutant mouse. J Neurosci. 1982;2:376–380.
  • Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res. 1988;70:256–265.
  • Verney C, Febvret-Muzerelle A, Gaspar P. Early postnatal changes of the dopaminergic mesencephalic neurons in the weaver mutant mouse. Dev Brain Res. 1995;89:115–119.
  • Roffler-Tarlov S, Martin B, Graybiel AM, Kauer JS. Cell death in the midbrain of the murine mutation weaver. J Neurosci. 1996;16:1819–1826.
  • Martí J, Wills KW, Ghetti B, Bayer SA. A combined immunohistochemical and autoradiographic method to detect midbrain neurons and determine their time of origin. Brain Res Protoc. 2002;9:197–205.
  • Martí J, Wills KW, Ghetti B, Bayer SA. Regional differences in the Purkinje cells settled pattern: a comparative autoradiographic study in control and homozygous weaver mice. Exp Neurol. 2002;175:168–181.
  • Martí J, Santa-Cruz MC, Bayer SA, Ghetti, B, Hervás, JP Purkinje cell age-distribution in fissures and in foliar crowns: a comparative study in the weaver cerebellum. Brain Struct Funct. 2007;212:347–357.
  • Altman J, Bayer SA. Development ofthe cerebellar system in relation to its evolution, structure andfunctions. Boca Raton, FL: CRC Press; 1997.
  • Lange W. Regional differences in the cytoarchitecture of the cerebellar cortex. In: Palay SL, Chan-Palay V editors. The cerebellum: new vistas. Berlin, Germany: Springer-Verlag; 1982. p. 93–107.
  • Sidman RL, Angevine JB, Taber-Pierce E. Atlas of the mouse brain and spinal cord. Cambridge, MA: Harvard University Press; 1971.
  • Bayer SA, Altman J. . Neurogenesis and neuronal migration. In: Patxinos G, editor. The rat nervous system. San Diego, CA: Academic Press; 1995. p. 1041–1078.
  • Bayer SA, Wills KV, Wei J, et al. Phenotypic effects of the weaver gene are evident in the embryonic cerebellum but not in the ventral midbrain. Dev Brain Research. 1996;96:130–137.
  • Martí J, Santa-Cruz MC, Bayer SA, Hervás JP. The weaver gene expression affects neuronal generation patterns depending on age and encephalic region. Neurosci Lett. 2006;396(3):202–206.
  • Bayer SA, Wills KV, Triarhou LC, Thomas JD, Ghetti B. Systematic differences in time of dopaminergic neuron origin between normal mice and homozygous weaver mutants. Exp Brain Res. 1995;105:200–208.
  • Bayer SA, Wills KV, Triarhou LC, Verina T, Thomas JD, Ghetti B. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc Natl Acad U S A. 1995;92:9137–9140.
  • Martí J, Wills KW, Ghetti B, Bayer SA. The weaver gene has no effect on the generation patterns of mesencephalic dopamine neurons. Dev Brain Res. 2000;122:65–172.
  • Martí J, Wills KW, Ghetti B, Bayer SA. The weaver gene continues to target late-generated dopaminergic neurons in midbrain areas at P90. Dev Brain Res. 2000;122:173–181.
  • Martí J, Santa-Cruz MC, Bayer SA, Ghetti B, Hervás JP. Generation and survival of midbrain dopaminergic neurons in weaver mice. Int J Devl Neurosci. 2007;25(5):299–307.
  • Smeyne RJ, Goldowitz D. Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: evidence from chimeric mice. Dev Brain Res. 1990;52:211–218.
  • Maricich SM, Soha J, Trenkner E, Herrup K. Failed cell migration and death of Purkinje cells and deep nuclear neurons in the weaver cerebellum. J Neurosci. 1997;17:675–3683.
  • Inouye M, Murakami U. Temporal and spatial patterns of Purkinje cell formation in the mouse cerebellum. J Comp Neurol. 1980;194:499–503.
  • Yuasa S, Kawamura K, Ono K, Yamakumi T, Takahashi T. Development and migration of Purkinje cells in the mouse cerebellar primordium. Anat Embryol. 1991;184:195–212.
  • Aguado C, Colón J, Ciruela F, et al. Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum. J Neurochem. 2008;105:497–511.
  • Lauritzen I, De Weille J, Adelbrecht C, et al. Comparative expression of the inward rectifier K+ channel GIRK2 in the cerebellum of normal and weaver mice. Brain Res. 1997;753:8–17.
  • Isomoto S, Kondo C, Takahashi N, et al. A novel ubiquitously distributed isoform of GIRK2 (GIRKb) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes. Biochem Biophys Res Commun. 1996;218:286–291.
  • Wei J, Hodes ME, Piva R, et al. Characterization of murine Girk2 transcript isoforms: structure and differentiatial expression. Genomics. 1998;51:379–390.
  • Slesinger PA, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron. 1996;16:321–331.
  • Schoots O, Wilson JM, Ethier N, Bigras E, Hebert TE, Van Tol HH. Co-expression of human Kir3 subunits can yield channels with different functional properties. Cell Signal. 1999;11:871–883.
  • Koyrakh L, Lujan R, Colón J, et al. Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J Neurosci. 2005;25:11468–11478.
  • Tucker SJ, Pessia M, Moorhouse AJ, et al. Heteromeric channel formation and Ca2+ -free media reduce the toxic effect of the weaver Kir 3.2 allele. FEBS Lett. 1996;390:253–257.
  • Chen SC, Ehrhard P, Goldowitz D, Smeyne RJ. Developmental expression of the GIRK family of inward rectifying potassium channels: implications for abnormalities in the weaver mutant mouse. Brain Res. 1997;778:251–264.
  • Graybiel AM, Ohta K, Roffler-Tarlov S. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J Neurosci. 1990;10(3):720–733.
  • Harashima C, Jacobowitz DM, Witta J, et al. Abnormal expression of the G-protein activated inwardly rectifying potassium channel 2 (GIRK2) in hippocampus, frontal cortex, and substantia nigra of Ts65Dn mouse: a model of Down syndrome. J Comp Neurol. 2006;494:815–833.
  • Liss B, Neu A, Roeper J. The weaver mouse gain-of-function phenotype of dopaminergic midbrain neurons is determined by coactivation of wwGirk2 and K-ATP channels. J Neurosci. 1999;15:839–8848.
  • Cruz HG, Ivanova T, Lunn ML, Stoffel M, Slesinger PA, Lüscher C. Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat Neurosci. 2004;7:153–159.
  • Matzuk MM, Saper CB. Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol. 1985;18:552–555.
  • Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122:1437–1448.
  • Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science. 2000;290:767–773.
  • Grondin R, Zhang Z, Yi A, et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain. 2002;125:2191–2201.
  • Broome JD, Will KV, Lapchak PA, Ghetti B, Camp LL, Bayer SA. Glial cell line-derived neurotrophic factor protects midbrain dopamine neurons from the lethal action of the weaver gene: a quantitative immunocytochemical study. Dev Brain Res. 1999;116:1–7.
  • Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med. 2005;11:703–704.