140
Views
2
CrossRef citations to date
0
Altmetric
Review

Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies

&
Pages 27-38 | Published online: 12 Jun 2014

References

  • Moss GP. Glossary of Terms Used in Medicinal Chemistry (IUPAC Recommendations 1998). International Union of Pure and Applied Chemistry: Recommendations on Organic and Biochemical Nomenclature, Symbols and Terminology. 2013. Available from: http://www.chem.qmul.ac.uk/iupac/medchem/ix.html. Accessed May 27, 2014.
  • Wermuth CG, Langer T. Pharmacophore identification. In: Kubinyi H, editor. 3D-QSAR in Drug Design. Theory, Methods, and Applications. Leiden, The Netherlands: ESCOM Science Publishers; 1993.
  • Kurogi Y, Guner OF. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem. 2001;8(9):1035–1055.
  • Mustata G, Follis AV, Hammoudeh DI, et al. Discovery of novel Myc-Max heterodimer disruptors with a three-dimensional pharmacophore model. J Med Chem. 2009;52(5):1247–1250.
  • Langer T, Krovat EM. Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. Curr Opin Drug Discov Devel. 2003;6(3):370–376.
  • Carlson HA, Masukawa KM, Rubins K, et al. Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem. 2000;43(11):2100–2114.
  • Chen J, Lai L. Pocket v.2: further developments on receptor-based pharmacophore modeling. J Chem Inf Model. 2006;46(6):2684–2691.
  • Fox T, Haaksma EE. Computer based screening of compound databases: 1. Preselection of benzamidine-based thrombin inhibitors. J Comput Aided Mol Des. 2000;14(5):411–425.
  • Steindl TM, Schuster D, Laggner C, Langer T. Parallel screening: a novel concept in pharmacophore modeling and virtual screening. J Chem Inf Model. 2006;46(5):2146–2157.
  • Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason JS. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J Chem Inf Model. 2007;47(2):279–294.
  • Bohm HJ. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des. 1992;6(1):61–78.
  • Wolber G, Seidel T, Bendix F, Langer T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today. 2008;13(1–2):23–29.
  • Adhikari N, Halder AK, Mondal C, Jha T. Ligand based validated comparative chemometric modeling and pharmacophore mapping of aurone derivatives as antimalarial agents. Curr Comput Aided Drug Des. 2013;9(3):417–432.
  • Barbaro R, Betti L, Botta M, et al. Synthesis, biological evaluation, and pharmacophore generation of new pyridazinone derivatives with affinity toward alpha(1)- and alpha(2)-adrenoceptors. J Med Chem. 2001;44(13):2118–2132.
  • Gozalbes R, Barbosa F, Nicolai E, Horvath D, Froloff N. Development and validation of a pharmacophore-based QSAR model for the prediction of CNS activity. ChemMedChem. 2009;4(2):204–209.
  • Sakkiah S, Arullaperumal V, Hwang S, Lee KW. Ligand-based pharmacophore modeling and Bayesian approaches to identify c-Src inhibitors. J Enzyme Inhib Med Chem. 2014;29(1):69–80.
  • Khedkar SA, Malde AK, Coutinho EC, Srivastava S. Pharmacophore modeling in drug discovery and development: an overview. Med Chem. 2007;3(2):187–197.
  • Kirubakaran P, Muthusamy K, Singh KH, Nagamani S. Ligand-based pharmacophore modeling; atom-based 3D-QSAR analysis and molecular docking studies of phosphoinositide-dependent kinase-1 inhibitors. Indian J Pharm Sci. 2012;74(2):141–151.
  • Bostrom J. Reproducing the conformations of protein-bound ligands: a critical evaluation of several popular conformational searching tools. J Comput Aided Mol Des. 2001;15(12):1137–1152.
  • Vieth M, Hirst JD, Brooks CL 3rd. Do active site conformations of small ligands correspond to low free-energy solution structures? J Comput Aided Mol Des. 1998;12(6):563–572.
  • Kirchmair J, Laggner C, Wolber G, Langer T. Comparative analysis of protein-bound ligand conformations with respect to catalyst’s conformational space subsampling algorithms. J Chem Inf Model. 2005;45(2):422–430.
  • Yankeelov JA Jr, Koshland DE Jr. Evidence for conformation changes induced by substrates of phosphoglucomutase. J Biol Chem. 1965;240:1593–1602.
  • Kellenberger E, Rodrigo J, Muller P, Rognan D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins. 2004;57(2):225–242.
  • Warren GL, Andrews CW, Capelli AM, et al. A critical assessment of docking programs and scoring functions. J Med Chem. 2006;49(20):5912–5931.
  • Bissantz C, Folkers G, Rognan D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem. 2000;43(25):4759–4767.
  • Charifson PS, Corkery JJ, Murcko MA, Walters WP. Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem. 1999;42(25):5100–5109.
  • Guner O, Clement O, Kurogi Y. Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr Med Chem. 2004;11(22):2991–3005.
  • Joseph-McCarthy D, Thomas BE, Belmarsh M, Moustakas D, Alvarez JC. Pharmacophore-based molecular docking to account for ligand flexibility. Proteins. 2003;51(2):172–188.
  • Krovat EM, Fruhwirth KH, Langer T. Pharmacophore identification, in silico screening, and virtual library design for inhibitors of the human factor Xa. J Chem Inf Model. 2005;45(1):146–159.
  • Discovery Studio [computer program]. Version 4.0. San Diego, CA, USA: Accelrys Inc.
  • Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45(1):160–169.
  • Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006;20(10–11):647–671.
  • Dixon SL, Smondyrev AM, Rao SN. PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des. 2006;67(5):370–372.
  • Sanders MP, Verhoeven S, de Graaf C, et al. Snooker: a structure-based pharmacophore generation tool applied to class A GPCRs. J Chem Inf Model. 2011;51(9):2277–2292.
  • Chowdhury A, Sen S, Dey P, et al. Computational validation of 3-ammonio-3-(4-oxido-1H-imidazol-1-ium-5-yl) propane-1, 1-bis (olate) as a potent anti-tubercular drug against mt-MetAP. Bioinformation. 2012;8(18):875–880.
  • Khan AH, Prakash A, Kumar D, Rawat AK, Srivastava R, Srivastava S. Virtual screening and pharmacophore studies for FTase inhibitors using Indian plant anticancer compounds database. Bioinformation. 2010;5(2):62–66.
  • Khan MT, Wuxiuer Y, Sylte I. Binding modes and pharmacophore modelling of thermolysin inhibitors. Mini Rev Med Chem. 2012;12(6):515–533.
  • Sanders MP, Barbosa AJ, Zarzycka B, et al. Comparative analysis of pharmacophore screening tools. J Chem Inf Model. 2012;52(6):1607–1620.
  • Kirchhoff PD, Brown R, Kahn S, Waldman M, Venkatachalam CM. Application of structure-based focusing to the estrogen receptor. J Comput Chem. 2001;22(10):993–1003.
  • Sutter J, Li J, Maynard AJ, Goupil A, Luu T, Nadassy K. New features that improve the pharmacophore tools from Accelrys. Curr Comput Aided Drug Des. 2011;7(3):173–180.
  • Al-Balas QA, Amawi HA, Hassan MA, Qandil AM, Almaaytah AM, Mhaidat NM. Virtual lead identification of farnesyltransferase inhibitors based on ligand and structure-based pharmacophore techniques. Pharmaceuticals. 2013;6(6):700–715.
  • Almasri IM, Taha MO, Mohammad MK. New leads for DPP IV inhibition: structure-based pharmacophore mapping and virtual screening study. Arch Pharm Res. 2013;36(11):1326–1337.
  • Liu C, He G, Jiang Q, Han B, Peng C. Novel hybrid virtual screening protocol based on molecular docking and structure-based pharmacophore for discovery of methionyl-tRNA synthetase inhibitors as antibacterial agents. Int J Mol Sci. 2013;14(7):14225–14239.
  • Steindl T, Langer T. Influenza virus neuraminidase inhibitors: generation and comparison of structure-based and common feature pharmacophore hypotheses and their application in virtual screening. J Chem Inf Model. 2004;44(5):1849–1856.
  • Schuster D, Langer T. The identification of ligand features essential for PXR activation by pharmacophore modeling. J Chem Inf Model. 2005;45(2):431–439.
  • Barillari C, Marcou G, Rognan D. Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores. J Chem Inf Model. 2008;48(7):1396–1410.
  • Muthusamy K, Singh KhD, Chinnasamy S, et al. High throughput virtual screening and E-pharmacophore filtering in the discovery of new BACE-1 inhibitors. Interdiscip Sci. 2013;5(2):119–126.
  • Saxena S, Devi PB, Soni V, Yogeeswari P, Sriram D. Identification of novel inhibitors against Mycobacterium tuberculosis l-alanine dehydrogenase (MTB-AlaDH) through structure-based virtual screening. J Mol Graph Model. 2014;47(0):37–43.
  • Nagamani S, Kesavan C, Muthusamy K. E-Pharmacophore mapping and docking studies on Vitamin D receptor (VDR). Bioinformation. 2012;8(15):705–710.
  • Kalyaanamoorthy S, Chen YP. Energy based pharmacophore mapping of HDAC inhibitors against class I HDAC enzymes. Biochim Biophys Acta. 2013;1834(1):317–328.
  • Jatana N, Sharma A, Latha N. Pharmacophore modeling and virtual screening studies to design potential COMT inhibitors as new leads. J Mol Graph Model. 2013;39:145–164.
  • Ebalunode JO, Ouyang Z, Liang J, Zheng W. Novel approach to structure-based pharmacophore search using computational geometry and shape matching techniques. J Chem Inf Model. 2008;48(4):889–901.
  • Dong X, Ebalunode JO, Yang SY, Zheng W. Receptor-based pharmacophore and pharmacophore key descriptors for virtual screening and QSAR modeling. Curr Comput Aided Drug Des. 2011;7(3):181–189.
  • Binkowski TA, Naghibzadeh S, Liang J. CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Res. 2003;31(13):3352–3355.
  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 2006;34(Web Server issue):W116–W118.
  • Edelsbrunner H, Facello M, Liang J. On the definition and the construction of pockets in macromolecules. Pac Symp Biocomput. 1996: 272–287.
  • Wang R, Gao Y, Lai L. LigBuilder: a multi-purpose program for structure-based drug design. J Mol Model. 2000;6(7–8):498–516.
  • Yuan Y, Pei J, Lai L. LigBuilder 2: a practical de novo drug design approach. J Chem Inf Model. 2011;51(5):1083–1091.
  • Wang R, Liu L, Lai L, Tang Y. SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. J Mol Model. 1998;4(12):379–394.
  • Stahl M, Rarey M. Detailed analysis of scoring functions for virtual screening. J Med Chem. 2001;44(7):1035–1042.
  • Tao P, Lai L. Protein ligand docking based on empirical method for binding affinity estimation. J Comput Aided Mol Des. 2001;15(5):429–446.
  • Kumar S, Nussinov R. Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys J. 2002;83(3):1595–1612.
  • Sanders MP, Fleuren WW, Verhoeven S, et al. ss-TEA: entropy based identification of receptor specific ligand binding residues from a multiple sequence alignment of class A GPCRs. BMC Bioinformatics. 2011;12:332.
  • Renner S, Schneider G. Fuzzy pharmacophore models from molecular alignments for correlation-vector-based virtual screening. J Med Chem. 2004;47(19):4653–4664.
  • Breu V, Hashido K, Broger C, et al. Separable binding sites for the natural agonist endothelin-1 and the non-peptide antagonist bosentan on human endothelin-A receptors. Eur J Biochem. 1995;231(1):266–270.
  • Shi L, Javitch JA. The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol. 2002;42:437–467.
  • De Luca L, Ferro S, Damiano FM, et al. Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur J Med Chem. 2014;71:105–111.
  • Michaux C, de Leval X, Julemont F, Dogne JM, Pirotte B, Durant F. Structure-based pharmacophore of COX-2 selective inhibitors and identification of original lead compounds from 3D database searching method. Eur J Med Chem. 2006;41(12):1446–1455.
  • Greenidge PA, Carlsson B, Bladh LG, Gillner M. Pharmacophores incorporating numerous excluded volumes defined by X-ray crystallographic structure in three-dimensional database searching: application to the thyroid hormone receptor. J Med Chem. 1998;41(14):2503–2512.
  • Zhang XW, Yap YL, Altmeyer RM. Generation of predictive pharmacophore model for SARS-coronavirus main proteinase. Eur J Med Chem. 2005;40(1):57–62.
  • Rella M, Rushworth CA, Guy JL, Turner AJ, Langer T, Jackson RM. Structure-based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors. J Chem Inf Model. 2006;46(2):708–716.
  • Ebalunode JO, Dong X, Ouyang Z, Liang J, Eckenhoff RG, Zheng W. Structure-based shape pharmacophore modeling for the discovery of novel anesthetic compounds. Bioorg Med Chem. 2009;17(14):5133–5138.
  • Liu R, Loll PJ, Eckenhoff RG. Structural basis for high-affinity volatile anesthetic binding in a natural 4-helix bundle protein. FASEB J. 2005;19(6):567–576.
  • Arooj M, Sakkiah S, Kim S, Arulalapperumal V, Lee KW. A combination of receptor-based pharmacophore modeling and QM techniques for identification of human chymase inhibitors. PLoS One. 2013;8(4):e63030.
  • Zou J, Xie HZ, Yang SY, Chen JJ, Ren JX, Wei YQ. Towards more accurate pharmacophore modeling: multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2. J Mol Graph Model. 2008;27(4):430–438.
  • Legraverend M, Tunnah P, Noble M, et al. Cyclin-dependent kinase inhibition by new C-2 alkynylated purine derivatives and molecular structure of a CDK2-inhibitor complex. J Med Chem. 2000;43(7):1282–1292.
  • Moser D, Achenbach J, Klingler FM, Estel la B, Hahn S, Proschak E. Evaluation of structure-derived pharmacophore of soluble epoxide hydrolase inhibitors by virtual screening. Bioorg Med Chem Lett. 2012;22(21):6762–6765.
  • Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem. 2008;8(18):1555–1572.
  • Olsen L, Jost S, Adolph HW, Pettersson I, Hemmingsen L, Jorgensen FS. New leads of metallo-beta-lactamase inhibitors from structure-based pharmacophore design. Bioorg Med Chem. 2006;14(8):2627–2635.
  • Zhao Y, Wang Q, Meng Q, et al. Identification of Trypanosoma brucei leucyl-tRNA synthetase inhibitors by pharmacophore- and docking-based virtual screening and synthesis. Bioorg Med Chem. 2012;20(3):1240–1250.
  • Karkola S, Alho-Richmond S, Wahala K. Pharmacophore modelling of 17beta-HSD1 enzyme based on active inhibitors and enzyme structure. Mol Cell Endocrinol. 2009;301(1–2):225–228.