153
Views
4
CrossRef citations to date
0
Altmetric
Review

Polo-like kinase 1 inhibition in NSCLC: mechanism of action and emerging predictive biomarkers

ORCID Icon &
Pages 67-80 | Published online: 01 Jul 2019

References

  • Cheng T-YD, Cramb SM, Baade PD, Youlden DR, Nwogu C, Reid ME. The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. J Thorac Oncol. 2016;11:1653–1671. doi:10.1016/j.jtho.2016.05.02127364315
  • McPhail S, Johnson S, Greenberg D, Peake M, Rous B. Stage at diagnosis and early mortality from cancer in England. Br J Cancer. 2015;112(Suppl 1):S108–S115. doi:10.1038/bjc.2015.4925734389
  • Lake RJ, Jelinek WR. Cell cycle- and terminal differentiation-associated regulation of the mouse mRNA encoding a conserved mitotic protein kinase. Mol Cell Biol. 1993;13(12):7793–7801. doi:10.1128/mcb.13.12.77937902533
  • Holtrich U, Wolf G, Bräuninger A, et al. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc Natl Acad Sci U S A. 1994;91(5):1736–1740. doi:10.1073/pnas.91.5.17368127874
  • Hamanaka R, Maloid S, Smith MR, O’Connell CD, Longo DL, Ferris DK. Cloning and characterization of human and murine homologues of the Drosophila polo serine-threonine kinase. Cell Growth Differ. 1994;5(3):249–257.8018557
  • Liby K, Wu H, Ouyang B, Wu S, Chen J, Dai W. Identification of the human homologue of the early-growth response gene Snk, encoding a serum-inducible kinase. DNA Seq. 2001;11(6):527–533.11696980
  • Li B, Ouyang B, Pan H, et al. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem. 1996;271(32):19402–19408. doi:10.1074/jbc.271.32.194028702627
  • Martin C-A, Ahmad I, Klingseisen A, et al. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat Genet. 2014;46(12):1283–1292. doi:10.1038/ng.312225344692
  • de Cárcer G, Escobar B, Higuero AM, et al. Plk5, a polo box domain-only protein with specific roles in neuron differentiation and glioblastoma suppression. Mol Cell Biol. 2011;31(6):1225–1239. doi:10.1128/MCB.00607-1021245385
  • Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer. 2006;6(4):321–330. doi:10.1038/nrc184116557283
  • Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241(4861):42–52.3291115
  • Elia AEH, Rellos P, Haire LF, et al. The molecular basis for phosphodependent substrate targeting and regulation of PLKs by the polo-box domain. Cell. 2003;115(1):83–95. doi:10.1016/S0092-8674(03)00725-614532005
  • Golsteyn RM, Mundt KE, Fry AM, Nigg EA. Cell cycle regulation of the activity and subcellular localization of PLK1, a human protein kinase implicated in mitotic spindle function. J Cell Biol. 1995;129(6):1617–1628. doi:10.1083/jcb.129.6.16177790358
  • Wolfe BA, Takaki T, Petronczki M, Glotzer M. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol. 2009;7(5):e1000110. doi:10.1371/journal.pbio.100011019468300
  • Petronczki M, Glotzer M, Kraut N, Peters J-M. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell. 2007;12(5):713–725. doi:10.1016/j.devcel.2007.03.01317488623
  • Moshe Y, Boulaire J, Pagano M, Hershko A. Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci U S A. 2004;101(21):7937–7942. doi:10.1073/pnas.040244210115148369
  • Hansen DV, Loktev AV, Ban KH, Jackson PK. PLK1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell. 2004;15(12):5623–5634. doi:10.1091/mbc.e04-07-059815469984
  • Yan W, Yu H, Li W, et al. PLK1 promotes the migration of human lung adenocarcinoma epithelial cells via STAT3 signaling. Oncol Lett. 2018;16(5):6801–6807. doi:10.3892/ol.2018.943730405824
  • Li H, Wang Y, Liu X. PLK1-dependent phosphorylation regulates functions of DNA topoisomerase IIalpha in cell cycle progression. J Biol Chem. 2008;283(10):6209–6221. doi:10.1074/jbc.M70900720018171681
  • Rizki A, Mott JD, Bissell MJ. Polo-like kinase 1 is involved in invasion through extracellular matrix. Cancer Res. 2007;67(23):11106–11110. doi:10.1158/0008-5472.CAN-07-234818056432
  • Wu Z-Q, Yang X, Weber G, Liu X. PLK1 phosphorylation of TRF1 is essential for its binding to telomeres. J Biol Chem. 2008;283(37):25503–25513. doi:10.1074/jbc.M80330420018625707
  • Toyoshima-Morimoto F, Taniguchi E, Shinya N, Iwamatsu A, Nishida E. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature. 2001;410(6825):215–220. doi:10.1038/3506561711242082
  • Seki A, Coppinger JA, Jang C-Y, Yates JR, Fang G. Bora and the kinase Aurora a cooperatively activate the kinase PLK1 and control mitotic entry. Science. 2008;320(5883):1655–1658. doi:10.1126/science.115742518566290
  • Macůrek L, Lindqvist A, Lim D, et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature. 2008;455(7209):119–123. doi:10.1038/nature0718518615013
  • Smith MR, Wilson ML, Hamanaka R, et al. Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun. 1997;234(2):397–405.9177283
  • Liu X, Erikson RL. Polo-like kinase (PLK)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci U S A. 2003;100(10):5789–5794. doi:10.1073/pnas.103152310012732729
  • Liu X, Erikson RL. Activation of Cdc2/cyclin B and inhibition of centrosome amplification in cells depleted of PLK1 by siRNA. Proc Natl Acad Sci U S A. 2002;99(13):8672–8676. doi:10.1073/pnas.13226959912077309
  • Spänkuch-Schmitt B, Bereiter-Hahn J, Kaufmann M, Strebhardt K. Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J Natl Cancer Inst. 2002;94(24):1863–1877. doi:10.1093/jnci/94.24.186312488480
  • Spänkuch-Schmitt B, Wolf G, Solbach C, et al. Downregulation of human polo-like kinase activity by antisense oligonucleotides induces growth inhibition in cancer cells. Oncogene. 2002;21(20):3162–3171. doi:10.1038/sj.onc.120541212082631
  • Sumara I, Gimenez-Abian JF, Gerlich D, et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol. 2004;14(19):1712–1722. doi:10.1016/j.cub.2004.09.04915458642
  • Wolf G, Elez R, Doermer A, et al. Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene. 1997;14(5):543–549. doi:10.1038/sj.onc.12008629053852
  • Allera-Moreau C, Rouquette I, Lepage B, et al. DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis. 2012;1:e30. doi:10.1038/oncsis.2012.2923552402
  • Wang Z-X, Xue D, Liu Z-L, et al. Overexpression of polo-like kinase 1 and its clinical significance in human non-small cell lung cancer. Int J Biochem Cell Biol. 2012;44(1):200–210. doi:10.1016/j.biocel.2011.10.01722064247
  • Li H, Wang H, Sun Z, Guo Q, Shi H, Jia Y. The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients: immunohistochemical analysis. Biosci Rep. 2017;37:BSR20170852. doi:10.1042/BSR20170852
  • Zhou Q, Su Y, Bai M. Effect of antisense RNA targeting Polo-like kinase 1 on cell growth in A549 lung cancer cells. J Huazhong Univ Sci Technol Med Sci. 2008;28(1):22–26. doi:10.1007/s11596-008-0106-918278450
  • Cogswell JP, Brown CE, Bisi JE, Neill SD. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ. 2000;11(12):615 http://cgd.aacrjournals.org/cgi/content/full/11/12/61511149596
  • Kawata E, Ashihara E, Maekawa T. RNA interference against polo-like kinase-1 in advanced non-small cell lung cancers. J Clin Bioinforma. 2011;1(1):6. doi:10.1186/2043-9113-1-621884621
  • Zhao X-Y, Nie C-L, Liang S-F, Yuan Z, Deng H-X, Wei Y-Q. Enhanced gemcitabine-mediated cell killing of human lung adenocarcinoma by vector-based RNA interference against PLK1. Biomed Pharmacother. 2012;66(8):597–602. doi:10.1016/j.biopha.2012.01.00323153503
  • Sinha RP, Häder D-P. UV-protectants in cyanobacteria. Plant Sci. 2008;174(3):278–289. doi:10.1016/j.plantsci.2007.12.004
  • Stevenson CS, Capper EA, Roshak AK, et al. The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol Exp Ther. 2002;303(2):858–866. doi:10.1124/jpet.102.03635012388673
  • Steegmaier M, Hoffmann M, Baum A, et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol. 2007;17(4):316–322. doi:10.1016/j.cub.2006.12.03717291758
  • Mross K, Frost A, Steinbild S, et al. Phase I dose escalation and pharmacokinetic study of BI 2536, a novel Polo-like kinase 1 inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2008;26(34):5511–5517. doi:10.1200/JCO.2008.16.154718955456
  • Hofheinz R-D, Al-Batran S-E, Hochhaus A, et al. An open-label, phase I study of the polo-like kinase-1 inhibitor, BI 2536, in patients with advanced solid tumors. Clin Cancer Res. 2010;16(18):4666–4674. doi:10.1158/1078-0432.CCR-10-031820682708
  • Sebastian M, Reck M, Waller CF, et al. The efficacy and safety of BI 2536, a novel PLK-1 inhibitor, in patients with stage IIIB/IV non-small cell lung cancer who had relapsed after, or failed, chemotherapy: results from an open-label, randomized phase II clinical trial. J Thorac Oncol. 2010;5(7):1060–1067. doi:10.1097/JTO.0b013e3181d95dd420526206
  • Ellis PM, Chu QS, Leighl N, et al. A phase I open-label dose-escalation study of intravenous BI 2536 together with pemetrexed in previously treated patients with non-small-cell lung cancer. Clin Lung Cancer. 2013;14(1):19–27. doi:10.1016/j.cllc.2012.04.00322658814
  • Rudolph D, Steegmaier M, Hoffmann M, et al. BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res. 2009;15(9):3094–3102. doi:10.1158/1078-0432.CCR-08-244519383823
  • Ferrarotto R, Goonatilake R, Yoo SY, et al. Epithelial-mesenchymal transition predicts polo-like kinase 1 inhibitor-mediated apoptosis in non-small cell lung cancer. Clin Cancer Res. 2016;22(7):1674–1686. doi:10.1158/1078-0432.CCR-14-289026597303
  • Crystal AS, Shaw AT, Sequist LV, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346(6216):1480–1486. doi:10.1126/science.125472125394791
  • Wang Y, Singh R, Wang L, et al. Polo-like kinase 1 inhibition diminishes acquired resistance to epidermal growth factor receptor inhibition in non-small cell lung cancer with T790M mutations. Oncotarget. 2016;7(30):47998–48010. doi:10.18632/oncotarget.1033227384992
  • Wang Y, Wu L, Yao Y, Lu G, Xu L, Zhou J. Polo-like kinase 1 inhibitor BI 6727 induces DNA damage and exerts strong antitumor activity in small cell lung cancer. Cancer Lett. 2018;436:1–9. doi:10.1016/j.canlet.2018.08.00730118839
  • Gil T, Schöffski P, Awada A, et al. Final analysis of a phase I single dose-escalation study of the novel polo-like kinase 1 inhibitor BI 6727 in patients with advanced solid tumors. J Clin Oncol. 2010;28(15_suppl):3061. doi:10.1200/jco.2010.28.15_suppl.306120479398
  • Schöffski P, Awada A, Dumez H, et al. A phase I, dose-escalation study of the novel Polo-like kinase inhibitor volasertib (BI 6727) in patients with advanced solid tumours. Eur J Cancer. 2012;48(2):179–186. doi:10.1016/j.ejca.2011.11.00122119200
  • Lin -C-C, Su W-C, Yen C-J, et al. A phase I study of two dosing schedules of volasertib (BI 6727), an intravenous polo-like kinase inhibitor, in patients with advanced solid malignancies. Br J Cancer. 2014;110(10):2434–2440. doi:10.1038/bjc.2014.19524755882
  • Machiels J-P, Peeters M, Herremans C, et al. A phase I study of volasertib combined with afatinib, in advanced solid tumors. Cancer Chemother Pharmacol. 2015;76(4):843–851. doi:10.1007/s00280-015-2860-226349473
  • Nokihara H, Yamada Y, Fujiwara Y, et al. Phase I trial of volasertib, a Polo-like kinase inhibitor, in Japanese patients with advanced solid tumors. Invest New Drugs. 2016;34(1):66–74. doi:10.1007/s10637-015-0300-026627079
  • de Braud F, Cascinu S, Spitaleri G, et al. A phase I, dose-escalation study of volasertib combined with nintedanib in advanced solid tumors. Ann Oncol. 2015;26(11):2341–2346. doi:10.1093/annonc/mdv35426395347
  • Gumireddy K, Reddy MVR, Cosenza SC, et al. ON01910, a non-ATP-competitive small molecule inhibitor of PLK1, is a potent anticancer agent. Cancer Cell. 2005;7(3):275–286. doi:10.1016/j.ccr.2005.02.00915766665
  • Prasad A, Khudaynazar N, Tantravahi RV, Gillum AM, Hoffman BS. ON 01910.Na (rigosertib) inhibits PI3K/Akt pathway and activates oxidative stress signals in head and neck cancer cell lines. Oncotarget. 2016;7(48):79388–79400. doi:10.18632/oncotarget.1269227764820
  • Xu F, He Q, Li X, et al. Rigosertib as a selective anti-tumor agent can ameliorate multiple dysregulated signaling transduction pathways in high-grade myelodysplastic syndrome. Sci Rep. 2014;4:7310. doi:10.1038/srep0731025472472
  • Ohnuma T, Lehrer D, Ren C, et al. Phase 1 study of intravenous rigosertib (ON 01910.Na), a novel benzyl styryl sulfone structure producing G2/M arrest and apoptosis, in adult patients with advanced cancer. Am J Cancer Res. 2013;3(3):323–338.23841031
  • Bowles DW, Diamond JR, Lam ET, et al. Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and PLK1 pathways, in adult patients with advanced solid malignancies. Clin Cancer Res. 2014;20(6):1656–1665. doi:10.1158/1078-0432.CCR-13-250624493827
  • Garland LL, Taylor C, Pilkington DL, Cohen JL, von Hoff DD. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors. Clin Cancer Res. 2006;12(17):5182–5189. doi:10.1158/1078-0432.CCR-06-021416951237
  • Weiss GJ, Jameson G, von Hoff DD, et al. Phase I dose escalation study of NMS-1286937, an orally available Polo-Like Kinase 1 inhibitor, in patients with advanced or metastatic solid tumors. Invest New Drugs. 2018;36(1):85–95. doi:10.1007/s10637-017-0491-728726132
  • Duffey MO, Vos TJ, Adams R, et al. Discovery of a potent and orally bioavailable benzolactam-derived inhibitor of Polo-like kinase 1 (MLN0905). J Med Chem. 2012;55(1):197–208. doi:10.1021/jm201117222070629
  • Wang -N-N, Li Z-H, Zhao H, et al. Molecular targeting of the oncoprotein PLK1 in pediatric acute myeloid leukemia: RO3280, a novel PLK1 inhibitor, induces apoptosis in leukemia cells. Int J Mol Sci. 2015;16(1):1266–1292. doi:10.3390/ijms1601126625574601
  • Mason JM, Lin DCC, Wei X, et al. Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell. 2014;26(2):163–176. doi:10.1016/j.ccr.2014.05.00625043604
  • Moureau S, Pohler E, Kroboth K, et al. Therapeutic potential of novel PLK1 inhibitor CYC140 in esophageal cancer and acute leukemia. European Journal of Cancer 2016;69:S117. doi:10.1016/S0959-8049(16)32948-3
  • Elia AEH, Cantley LC, Yaffe MB. Proteomic screen finds pSer/pThr-binding domain localizing PLK1 to mitotic substrates. Science. 2003;299(5610):1228–1231. doi:10.1126/science.107907912595692
  • Yun S-M, Moulaei T, Lim D, et al. Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat Struct Mol Biol. 2009;16(8):876–882. doi:10.1038/nsmb.162819597481
  • Reindl W, Strebhardt K, Berg T. A high-throughput assay based on fluorescence polarization for inhibitors of the polo-box domain of polo-like kinase 1. Anal Biochem. 2008;383(2):205–209. doi:10.1016/j.ab.2008.08.01418793607
  • Yuan J, Sanhaji M, Krämer A, et al. Polo-box domain inhibitor poloxin activates the spindle assembly checkpoint and inhibits tumor growth in vivo. Am J Pathol. 2011;179(4):2091–2099. doi:10.1016/j.ajpath.2011.06.03121839059
  • Scharow A, Raab M, Saxena K, et al. Optimized PLK1 PBD inhibitors based on poloxin induce mitotic arrest and apoptosis in tumor cells. ACS Chem Biol. 2015;10(11):2570–2579. doi:10.1021/acschembio.5b0056526279064
  • Reindl W, Yuan J, Krämer A, Strebhardt K, Berg T. A pan-specific inhibitor of the polo-box domains of polo-like kinases arrests cancer cells in mitosis. Chembiochem. 2009;10(7):1145–1148. doi:10.1002/cbic.20090005919350612
  • Srinivasrao G, Park J-E, Kim S, et al. Design and synthesis of a cell-permeable, drug-like small molecule inhibitor targeting the polo-box domain of polo-like kinase 1. PLoS One. 2014;9(9):e107432. doi:10.1371/journal.pone.010743225211362
  • Narvaez AJ, Ber S, Crooks A, et al. Modulating protein-protein interactions of the mitotic polo-like kinases to target mutant KRAS. Cell Chem Biol. 2017;24(8):1017–1028.e7. doi:10.1016/j.chembiol.2017.07.00928807782
  • Shan H-M, Shi Y, Quan J. Identification of green tea catechins as potent inhibitors of the polo-box domain of polo-like kinase 1. ChemMedChem. 2015;10(1):158–163. doi:10.1002/cmdc.20140228425196850
  • Laurie SA, Miller VA, Grant SC, Kris MG, Ng KK. Phase I study of green tea extract in patients with advanced lung cancer. Cancer Chemother Pharmacol. 2005;55(1):33–38. doi:10.1007/s00280-004-0859-115309507
  • Guan R, Tapang P, Leverson JD, Albert D, Giranda VL, Luo Y. Small interfering RNA-mediated Polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals. Cancer Res. 2005;65(7):2698–2704. doi:10.1158/0008-5472.CAN-04-213115805268
  • Anderson RT, Keysar SB, Bowles DW, et al. The dual pathway inhibitor rigosertib is effective in direct patient tumor xenografts of head and neck squamous cell carcinomas. Mol Cancer Ther. 2013;12(10):1994–2005. doi:10.1158/1535-7163.MCT-13-020623873848
  • Degenhardt Y, Greshock J, Laquerre S, et al. Sensitivity of cancer cells to PLK1 inhibitor GSK461364A is associated with loss of p53 function and chromosome instability. Mol Cancer Ther. 2010;9(7):2079–2089. doi:10.1158/1535-7163.MCT-10-009520571075
  • McKenzie L, King S, Marcar L, et al. p53-dependent repression of polo-like kinase-1 (PLK1). Cell Cycle. 2010;9(20):4200–4212. doi:10.4161/cc.9.20.1353220962589
  • Danovi D, Folarin A, Gogolok S, et al. A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1. PLoS One. 2013;8(10):e77053. doi:10.1371/journal.pone.007705324204733
  • Liu X, Lei M, Erikson RL. Normal cells, but not cancer cells, survive severe PLK1 depletion. Mol Cell Biol. 2006;26(6):2093–2108. doi:10.1128/MCB.26.6.2093-2108.200616507989
  • Sur S, Pagliarini R, Bunz F, et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci U S A. 2009;106(10):3964–3969. doi:10.1073/pnas.081333310619225112
  • Smith L, Farzan R, Ali S, Buluwela L, Saurin AT, Meek DW. The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation. Sci Rep. 2017;7(1):16115. doi:10.1038/s41598-017-16394-229170437
  • Steels E, Paesmans M, Berghmans T, et al. Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis. Eur Respir J. 2001;18(4):705–719. doi:10.1183/09031936.01.0006220111716177
  • Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L, Schmid-Bindert G. KRAS-Mutant non-small cell lung cancer: from biology to therapy. Lung Cancer. 2018;124:53–64. doi:10.1016/j.lungcan.2018.07.01330268480
  • Luo J, Emanuele MJ, Li D, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137(5):835–848. doi:10.1016/j.cell.2009.05.00619490893
  • Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, et al. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell. 2016;165(3):643–655. doi:10.1016/j.cell.2016.03.04527104980
  • Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–328. doi:10.1016/j.tibs.2011.03.00621531565
  • Liu XS, Song B, Elzey BD, et al. Polo-like kinase 1 facilitates loss of Pten tumor suppressor-induced prostate cancer formation. J Biol Chem. 2011;286(41):35795–35800. doi:10.1074/jbc.C111.26905021890624
  • Dietrich P, Freese K, Mahli A, Thasler WE, Hellerbrand C, Bosserhoff AK. Combined effects of PLK1 and RAS in hepatocellular carcinoma reveal rigosertib as promising novel therapeutic “dual-hit” option. Oncotarget. 2018;9(3):3605–3618. doi:10.18632/oncotarget.2318829423069
  • Ye C, Wang J, Wu P, et al. Prognostic role of cyclin B1 in solid tumors: a meta-analysis. Oncotarget. 2016;8(2):2224–2232. doi:10.18632/oncotarget.13653
  • Soria JC, Jang SJ, Khuri FR, et al. Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res. 2000;60(15):4000–4004.10945597
  • Cooper WA, Kohonen-Corish MRJ, McCaughan B, Kennedy C, Sutherland RL, Lee CS. Expression and prognostic significance of cyclin B1 and cyclin A in non-small cell lung cancer. Histopathology. 2009;55(1):28–36. doi:10.1111/j.1365-2559.2009.03331.x19614764
  • Arinaga M, Noguchi T, Takeno S, et al. Clinical implication of cyclin B1 in non-small cell lung cancer. Oncol Rep. 2003;10(5):1381–1386.12883711
  • Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H. The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol. 2004;15(2):252–256. doi:10.1093/annonc/mdh07314760118
  • Jimeno A, Chan A, Cusatis G, et al. Evaluation of the novel mitotic modulator ON 01910.Na in pancreatic cancer and preclinical development of an ex vivo predictive assay. Oncogene. 2009;28(4):610. doi:10.1038/onc.2008.42419029951
  • Olnes MJ, Shenoy A, Weinstein B, et al. Directed therapy for patients with myelodysplastic syndromes (MDS) by suppression of cyclin D1 with ON 01910.Na. Leuk Res. 2012;36(8):982–989. doi:10.1016/j.leukres.2012.04.00222524974
  • Kalimutho M, Sinha D, Jeffery J, et al. CEP55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Mol Med. 2018;10:9. doi:10.15252/emmm.201708566
  • Jiang C, Zhang Y, Li Y, et al. High CEP55 expression is associated with poor prognosis in non-small-cell lung cancer. OTT. 2018;11:4979–4990. doi:10.2147/OTT.S165750
  • Zhang M, Singh R, Peng S, et al. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors. Cancer Lett. 2017;392:71–82. doi:10.1016/j.canlet.2017.01.02428126323
  • Legras A, Pécuchet N, Imbeaud S, et al. Epithelial-to-mesenchymal transition and MicroRNAs in lung cancer. Cancers (Basel). 2017;9:8. doi:10.3390/cancers9080101
  • Heery R, Finn SP, Cuffe S, Gray SG. Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel). 2017;9:4. doi:10.3390/cancers9040038
  • Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–629. doi:10.1038/nrclinonc.2017.4428397828
  • Du B, Shim JS. Targeting Epithelial-Mesenchymal Transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21:7. doi:10.3390/molecules21070965
  • Brozovic A. The relationship between platinum drug resistance and epithelial-mesenchymal transition. Arch Toxicol. 2017;91(2):605–619. doi:10.1007/s00204-016-1912-728032148
  • Xiao D, He J. Epithelial mesenchymal transition and lung cancer. J Thorac Dis. 2010;2(3):154–159. doi:10.3978/j.issn.2072-1439.2010.02.03.722263037
  • Hashida S, Yamamoto H, Shien K, et al. Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib. Cancer Sci. 2015;106(10):1377–1384. doi:10.1111/cas.1274926202045
  • Singh R, Peng S, Viswanath P, et al. Non-canonical cMet regulation by vimentin mediates PLK1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;11:5. doi:10.15252/emmm.201809960
  • Breitenbuecher F, von Pawel J, Sebastian M, et al. Comprehensive biomarker analyses in patients with advanced or metastatic non-small cell lung cancer prospectively treated with the polo-like kinase 1 inhibitor BI2536. Oncol Res Treat. 2017;40(7–8):435–439. doi:10.1159/00047550328628916