284
Views
2
CrossRef citations to date
0
Altmetric
Original Research

The MOVE-C Cervical Artificial Disc – Design, Materials, Mechanical Safety

ORCID Icon, , &
Pages 315-324 | Published online: 25 Sep 2020

References

  • Dong L, Xu Z, Chen X, et al. The change of adjacent segment after cervical disc arthroplasty compared with anterior cervical discectomy and fusion: a meta-analysis of randomized controlled trials. Spine J. 2017;10(10):1549–1558. doi:10.1016/j.spinee.2017.06.010
  • Latka D, Kozlowska K, Miekisiak G, et al. Safety and efficacy of cervical disc arthroplasty in preventing the adjacent segment disease: a meta-analysis of mid- to long-term outcomes in prospective, randomized, controlled multicenter studies. Ther Clin Risk Manag. 2019;Volume 15:531–539. doi:10.2147/TCRM.S196349
  • Wang Q-L, Tu Z-M, Hu P, et al. Long-term results comparing cervical disc arthroplasty to anterior cervical discectomy and fusion: a systematic review and meta-analysis of randomized controlled trials. Orthop Surg. 2020;1(1):16–30. doi:10.1111/os.12585
  • Kan S-L, Yuan Z-F, Ning G-Z, Liu -F-F, Sun J-C, Feng S-Q. Cervical disc arthroplasty for symptomatic cervical disc disease: traditional and Bayesian meta-analysis with trial sequential analysis. Int J Surg. 2016;35:111–119. doi:10.1016/j.ijsu.2016.09.088
  • Xie L, Liu M, Ding F, Li P, Ma D. Cervical disc arthroplasty (CDA) versus anterior cervical discectomy and fusion (ACDF) in symptomatic cervical degenerative disc diseases (CDDDs): an updated meta-analysis of prospective randomized controlled trials (RCTs). SpringerPlus. 2016;1(1):1188. doi:10.1186/s40064-016-2851-8
  • Gornet MF, Lanman TH, Burkus JK, et al. Cervical disc arthroplasty with the prestige LP disc versus anterior cervical discectomy and fusion, at 2 levels: results of a prospective, multicenter randomized controlled clinical trial at 24 months. J Neurosurg Spine. 2017;6(6):653–667. doi:10.3171/2016.10.SPINE16264
  • Choi H, Purushothaman Y, Baisden J, Yoganandan N. Unique biomechanical signatures of bryan, prodisc C, and prestige LP cervical disc replacements: a finite element modelling study. Eur Spine J. 2019. doi:10.1007/s00586-019-06113-y
  • Pham M, Phan K, Teng I, Mobbs RJ. Comparative study between M6-C and mobi-C cervical artificial disc replacement: biomechanical outcomes and comparison with normative data. Orthop Surg. 2018;2(2):84–88. doi:10.1111/os.12376
  • Lin C-Y, Kang H, Rouleau JP, Hollister SJ, La Marca F. Stress analysis of the interface between cervical vertebrae end plates and the bryan, prestige LP, and prodisc-C cervical disc prostheses: an in vivo image-based finite element study. Spine. 2009;15(15):1554. doi:10.1097/BRS.0b013e3181aa643b
  • Patwardhan AG, Havey RM. Prosthesis design influences segmental contribution to total cervical motion after cervical disc arthroplasty. Eur Spine J. 2019. doi:10.1007/s00586-019-06064-4
  • Lauryssen C, Coric D, Dimmig T, Musante D, Ohnmeiss DD, Stubbs HA. Cervical total disc replacement using a novel compressible prosthesis: results from a prospective food and drug administration-regulated feasibility study with 24-month follow-up. Int J Spine Surg. 2012;6(1):71–77. doi:10.1016/j.ijsp.2012.02.001
  • Wenger M, Markwalder T-M. Bryan total disc arthroplasty: a replacement disc for cervical disc disease. Med Devices (Auckl). 2010;11–24.
  • Baltus C, Costa E, Vaz G, Raftopoulos C. Granulomatous reaction on a double-level cervical total disc arthroplasty. World Neurosurg. 2019;122:360–363. doi:10.1016/j.wneu.2018.11.070
  • Brenke C, Schmieder K, Barth M. Core herniation after implantation of a cervical artificial disc: case report. Eur Spine J. 2015;24(S4):S536–9. doi:10.1007/s00586-014-3677-0
  • Xia M-AM, Winder MJ. M6-C cervical disc replacement failure associated with late onset infection. J Spine Surg. 2019;4(4):584–588. doi:10.21037/jss.2019.11.06
  • Fan H, Wu S, Wu Z, Wang Z, Guo Z. Implant failure of Bryan cervical disc due to broken polyurethane sheath: a case report. Spine. 2012;13(13):E814–6. doi:10.1097/BRS.0b013e3182477d85
  • Ragone V, Canciani E, Biffi CA, et al. CoCrMo alloys ions release behavior by TiNbN coating: an in vitro study. Biomed Microdevices. 2019;3(3):61. doi:10.1007/s10544-019-0417-6
  • Haider H, Weisenburger JN, Croson RE, Namavar F, Garvin KL. Concern with adhesion and wear of a titanium niobium nitride coating on total knee replacements for metal sensitive patients. 54th Annual Meeting of the Orthopaedic Research Society; 2008.
  • Gotman I, Gutmanas EY, Hunter G. 1.8 Wear-resistant ceramic films and coatings. In: Ducheyne P, editor. Comprehensive Biomaterials II. Oxford: Elsevier; 2017:165–203.
  • Fabry C, Zietz C, Baumann A, Bader R. Wear performance of sequentially cross-linked polyethylene inserts against ion-treated CoCr, TiNbN-coated CoCr and Al2O3 ceramic femoral heads for total hip replacement. Lubricants. 2015;1(1):14–26. doi:10.3390/lubricants3010014
  • Malikian R, Maruthainar K, Stammers J, Wilding CP, Blunn GW. Four Station Knee Simulator Wear Testing Comparing Titanium Niobium Nitride with Cobalt Chrome. 2013.
  • Serro AP, Completo C, Colaço R, et al. A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications. Surf Coat Technol. 2009;24(24):3701–3707. doi:10.1016/j.surfcoat.2009.06.010
  • Allyn G, Bloebaum RD, Epperson RT, Nielsen MB, Dodd KA, Williams DL. Ability of a wash regimen to remove biofilm from the exposed surface of materials used in osseointegrated implants. J Orthop Res. 2019;1(1):248–257. doi:10.1002/jor.24161
  • Bidossi A, Bottagisio M, De Grandi R, De Vecchi E. Ability of adhesion and biofilm formation of pathogens of periprosthetic joint infections on titanium-niobium nitride (TiNbN) ceramic coatings. J Orthop Surg Res. 2020;1(1):90. doi:10.1186/s13018-020-01613-w
  • Ajdari N, Tempelaere C, Masouleh MI, et al. Hemiarthroplasties: the choice of prosthetic material causes different levels of damage in the articular cartilage. J Shoulder Elbow Surg. 2020;5(5):1019–1029. doi:10.1016/j.jse.2019.09.041
  • St John K, Gupta M. Evaluation of the wear performance of a polycarbonate-urethane acetabular component in a hip joint simulator and comparison with UHMWPE and cross-linked UHMWPE. J Biomater Appl. 2012;1(1):55–65. doi:10.1177/0885328210394471
  • Grieco PW, Pascal S, Newman JM, et al. New alternate bearing surfaces in total hip arthroplasty: a review of the current literature. J Clin Orthop Trauma. 2018;1(1):7–16. doi:10.1016/j.jcot.2017.10.013
  • Smith RA, Hallab NJ. In vitro macrophage response to polyethylene and polycarbonate-urethane particles. J Biomed Mater Res A. 2010;1:347–355.
  • Eliaz N. Corrosion of metallic biomaterials: a review. Materials. 2019;3.
  • Beckmann A, Heider Y, Stoffel M, Markert B. Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices. J Mech Behav Biomed Mater. 2018;82:1–8. doi:10.1016/j.jmbbm.2018.02.015
  • Dempsey DK, Carranza C, Chawla CP, et al. Comparative analysis of in vitro oxidative degradation of poly(carbonate urethanes) for biostability screening. J Biomed Mater Res A. 2014;10(10):3649–3665. doi:10.1002/jbm.a.35037
  • Khan I, Smith N, Jones E, Finch DS, Cameron RE. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation. Biomaterials. 2005;6(6):633–643. doi:10.1016/j.biomaterials.2004.02.064
  • Kurtz SM, Siskey R, Reitman M. Accelerated aging, natural aging, and small punch testing of gamma-air sterilized polycarbonate urethane acetabular components. J Biomed Mater Res B Appl Biomater. 2010;2(2):442–447. doi:10.1002/jbm.b.31601
  • Araujo ARG, Peixinho N, Pinho ACM, Claro JCP. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment. Acta Bioeng Biomech. 2015;4.
  • Bernhardt P, Wilke H-J, Wenger KH, Jungkunz B, Böhm A, Claes LE. Multiple muscle force simulation in axial rotation of the cervical spine. Clin Biomech. 1999;1(1):32–40. doi:10.1016/S0268-0033(98)00031-X
  • Walker LB, Harris EH, Pontius UR. Mass, Volume, Center of Mass, and Mass Moment of Inertia of Head and Head and Neck of Human Body. 1973.
  • ISO 18192–1. Implants for Surgery — Wear of Total Intervertebral Spinal Disc Prostheses — Part Loading and Displacement Parameters for Wear Testing and Corresponding Environmental Conditions for Test. 2008. 1–32.
  • Krachler M, Heisel C, Philippe Kretzer J. Validation of ultratrace analysis of Co, Cr, Mo and Ni in whole blood, serum and urine using ICP-SMS. J Anal at Spectrom. 2009;5(5):605. doi:10.1039/b821913c
  • Nothelfer S, Bergmann F, Liemert A, Reitzle D, Kienle A. Spatial frequency domain imaging using an analytical model for separation of surface and volume scattering. J Biomed Opt. 2018;7(07):1–10. doi:10.1117/1.JBO.24.7.071604
  • FDA. Mobi-C® cervical disc prosthesis. Summary Saf Effect Data. 2013:P110002.
  • FDA. ProDisc™-C total disc replacement. Summary Saf Effect Data. 2007:P070001.
  • Anderson PA, Rouleau JP, Bryan VE, Carlson CS. Wear analysis of the Bryan cervical disc prosthesis. Spine. 2003;20(Supplement):S186–94. doi:10.1097/01.BRS.0000092212.42388.79
  • Wu W, Lyu J, Liu H, et al. Wear assessments of a new cervical spinal disk prosthesis: influence of loading and kinematic patterns during in vitro wear simulation. Proc Inst Mech Eng H. 2015;9(9):619–628. doi:10.1177/0954411915594829
  • Grupp TM, Meisel H-J, Cotton JA, et al. Alternative bearing materials for intervertebral disc arthroplasty. Biomaterials. 2010;3(3):523–531. doi:10.1016/j.biomaterials.2009.09.064
  • Gloria A, Causa F, De Santis R, Netti PA, Ambrosio L. Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. J Mater Sci Mater Med. 2007;11(11):2159–2165. doi:10.1007/s10856-007-3003-z
  • van der Veen AJ, Mullender MG, Kingma I, van Dieen JH, Smit TH. Contribution of vertebral corrected bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. J Biomech. 2008;6(6):1260–1268. doi:10.1016/j.jbiomech.2008.01.010
  • O’Connell GD, Jacobs NT, Sen S, Vresilovic EJ, Elliott DM. Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J Mech Behav Biomed Mater. 2011;7(7):933–942. doi:10.1016/j.jmbbm.2011.02.002