174
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Difference in Pain and Discomfort of Comparable Wrist Movements Induced by Magnetic or Electrical Stimulation for Peripheral Nerves in the Dorsal Forearm

, ORCID Icon, , , ORCID Icon, & show all
Pages 439-447 | Published online: 18 Dec 2020

References

  • Bistolfi A, Zanovello J, Ferracini R, et al. Evaluation of the effectiveness of neuromuscular electrical stimulation after total knee arthroplasty: a meta-analysis. Am J Phys Med Rehabil. 2018;97:123–130. doi:10.1097/PHM.0000000000000847
  • Kwong PW, Ng GY, Chung RC, Ng SS. Transcutaneous electrical nerve stimulation improves walking capacity and reduces spasticity in stroke survivors: a systematic review and meta-analysis. Clin Rehabil. 2018;32:1203–1219. doi:10.1177/0269215517745349
  • Jung K, Jung J, In T, Kim T, Cho HY. The influence of task-related training combined with transcutaneous electrical nerve stimulation on paretic upper limb muscle activation in patients with chronic stroke. NeuroRehabilitation. 2017;40:315–323. doi:10.3233/NRE-161419
  • Tu-Chan AP, Natraj N, Godlove J, Abrams G, Ganguly K. Effects of somatosensory electrical stimulation on motor function and cortical oscillations. J Neuroeng Rehabil. 2017;14:113. doi:10.1186/s12984-017-0323-1
  • Chae J, Bethoux F, Bohine T, Dobos L, Davis T, Friedl A. Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke. 1998;29:975–979. doi:10.1161/01.STR.29.5.975
  • Beaulieu LD, Massé-Alarie H, Camiré-Bernier S, Ribot-Ciscar É, Schneider C. After-effects of peripheral neurostimulation on brain plasticity and ankle function in chronic stroke: the role of afferents recruited. Clin Neurophysiol. 2017;47:275–291. doi:10.1016/j.neucli.2017.02.003
  • Krewer C, Hartl S, Müller F, Koenig E. Effects of repetitive peripheral magnetic stimulation on upper-limb spasticity and impairment in patients with spastic hemiparesis: a randomized, double-blind, sham-controlled study. Arch Phys Med Rehabil. 2014;95:1039–1047. doi:10.1016/j.apmr.2014.02.003
  • Beaulieu LD, Schneider C. Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review. Neurophysiol Clin. 2013;43:251–260. doi:10.1016/j.neucli.2013.05.003
  • Ito T, Tsubahara A, Watanabe S. Use of electrical or magnetic stimulation for generating hip flexion torque. Am J Phys Med Rehabil. 2013;92:755–761. doi:10.1097/PHM.0b013e318282c643
  • Han TR, Shin HI, Kim IS. Magnetic stimulation of the quadriceps femoris muscle: comparison of pain with electrical stimulation. Am J Phys Med Rehabil. 2006;85:593. doi:10.1097/01.phm.0000223239.93539.fe
  • Kandel ER. Principles of Neural Science. 5th ed. New York: McGraw Hill; 2012.
  • Manzano GM, Giuliano LM, Nóbrega JA. A brief historical note on the classification of nerve fibers. Arq Neuropsiquiatr. 2008;66:117–119. doi:10.1590/S0004-282X2008000100033
  • Bachasson D, Temesi J, Bankole C, et al. Assessment of quadriceps strength, endurance and fatigue in FSHD and CMT: benefits and limits of femoral nerve magnetic stimulation. Clin Neurophysiol. 2014;125:396–405. doi:10.1016/j.clinph.2013.08.001
  • Szecsi J, Straube A, Fornusek C. Comparison of the pedalling performance induced by magnetic and electrical stimulation cycle ergometry in able-bodied subjects. Med Eng Phys. 2014;36:484–489. doi:10.1016/j.medengphy.2013.09.010
  • Szecsi J, Götz S, Pöllmann W, Straube A. Force-pain relationship in functional magnetic and electrical stimulation of subjects with paresis and preserved sensation. Clin Neurophysiol. 2010;121:1589–1597. doi:10.1016/j.clinph.2010.03.023
  • Mori H, Yashima K, Hiroyuki K, Izumi S, Takagi T. Trial manufacture of magnetic stimulation coil to induce the contraction of suprahyoid muscles. Biomechanisms. 2018;24:79–88. (in Japanese). doi:10.3951/biomechanisms.24.79
  • Kagaya H, Ogawa M, Mori S, et al. Hyoid bone movement at rest by peripheral magnetic stimulation of suprahyoid muscles in normal individuals. Neuromodulation. 2019;22:593–596. doi:10.1111/ner.12777
  • Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113. doi:10.1016/0028-3932(71)90067-4
  • Matsumoto H, Hanajima R, Terao Y, Ugawa Y. Magnetic-motor-root stimulation: review. Clin Neurophysiol. 2013;124(6):1055–1067. doi:10.1016/j.clinph.2012.12.049
  • Yashima K, Takagi T, Izumi S, et al. Dorsiflexion movement of the wrist by magnetic stimulation. J Soc Biomech. 2016;40:103–109. (in Japanese). doi:10.3951/sobim.40.2_103
  • Izumi S, Oouchida Y, Okita T, et al. Development of an integration circuit to measure pulsed magnetic field. JJCRS. 2012;3:42–50.
  • Izumi S, Takagi T, Nagatomi R, Nakazato N, Yashima Y, Abe T. Fabrication of multi-coil system for deep brain transcranial magnetic stimulation. Jpn J Clin Neurophysio. 2009;27:1–9. (in Japanese).
  • Ferreira-Valente MA, Pais-Ribeiro JL, Jensen MP. Validity of four pain intensity rating scales. Pain. 2011;152:2399–2404. doi:10.1016/j.pain.2011.07.005
  • Chuang LL, Chen YL, Chen CC, et al. Effect of EMG-triggered neuromuscular electrical stimulation with bilateral arm training on hemiplegic shoulder pain and arm function after stroke: a randomized controlled trial. J Neuroeng Rehabil. 2017;14(1):122. doi:10.1186/s12984-017-0332-0
  • DeLean A, Munson PJ, Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978;235:E97–E102.
  • Takahashi K, Taguchi T, Tanaka S, et al. Painful muscle stimulation preferentially activates emotion-related brain regions compared to painful skin stimulation. Neurosci Res (N Y). 2011;70:285–293. doi:10.1016/j.neures.2011.04.001