144
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Human Whole Blood Culture System Reveals Detailed Cytokine Release Profiles of Implant Materials

, , , , , & show all
Pages 23-36 | Received 15 Oct 2023, Accepted 19 Dec 2023, Published online: 04 Jan 2024

References

  • Pałka K, Pokrowiecki R. Porous titanium implants: a review. Adv Eng Mater. 2018;20(5):1700648. doi:10.1002/adem.201700648
  • Lowe B, Ottensmeyer MP, Xu C, He Y, Ye Q, Troulis MJ. The regenerative applicability of bioactive glass and beta-tricalcium phosphate in bone tissue engineering: a transformation perspective. J Funct Biomater. 2019;10(1):16. doi:10.3390/jfb10010016
  • Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–337. doi:10.1111/eos.12364
  • Bernard M, Jubeli E, Pungente MD, Yagoubi N. Biocompatibility of polymer-based biomaterials and medical devices - regulations, in vitro screening and risk-management. Biomater Sci. 2018;6(8):2025–2053. doi:10.1039/c8bm00518d
  • Swetha B, Mathew S, Murthy S, Nagaraja S, Bhandi S. Determination of biocompatibility: a review. Int Dent Med J Adv Res. 2015;1:1–6. doi:10.15713/ins.idmjar.2
  • Mariani E, Lisignoli G, Borzì RM, Pulsatelli L. Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci. 2019;20(3):636. doi:10.3390/ijms20030636
  • Fang P, Li X, Dai J, et al. Immune cell subset differentiation and tissue inflammation. J Hematol Oncol. 2018;11(1):97. doi:10.1186/s13045-018-0637-x
  • Kzhyshkowska J, Gudima A, Riabov V, Dollinger C, Lavalle P, Vrana NE. Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol. 2015;98(6):953–962. doi:10.1189/jlb.5VMR0415-166R
  • Bohlson SS, O’Conner SD, Hulsebus HJ, Ho -M-M, Fraser DA. Complement, C1q, and C1q-related molecules regulate macrophage polarization. Front Immunol. 2014;5. doi:10.3389/fimmu.2014.00402
  • Hsieh JY, Smith TD, Meli VS, Tran TN, Botvinick EL, Liu WF. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater. 2017;47:14–24. doi:10.1016/j.actbio.2016.09.024
  • Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. doi:10.3389/fphys.2018.00113
  • Lock A, Cornish J, Musson DS. The role of in vitro immune response assessment for biomaterials. J Funct Biomater. 2019;10(3):31. doi:10.3390/jfb10030031
  • Chu C, Liu L, Rung S, et al. Modulation of foreign body reaction and macrophage phenotypes concerning microenvironment. J Biomed Mater Res Part A. 2020;108(1):127–135. doi:10.1002/jbm.a.36798
  • Hachim D, LoPresti ST, Yates CC, Brown BN. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials. 2017;112:95–107. doi:10.1016/j.biomaterials.2016.10.019
  • Zipursky A, Bow E, Seshadri RS, Brown EJ. Leukocyte density and volume in normal subjects and in patients with acute lymphoblastic leukemia. Blood. 1976;48(3):361–371. doi:10.1182/blood.V48.3.361.361
  • Schildhauer TA, Peter E, Muhr G, Köller M. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials. J Biomed Mater Res Part A. 2009;88A(2):332–341. doi:10.1002/jbm.a.31850
  • Takahashi A, Takahashi S, Tsujino T, et al. Platelet adhesion on commercially pure titanium plates in vitro I: effects of plasma components and involvement of the von Willebrand factor and fibronectin. Int J Implant Dentist. 2019;5(1):5. doi:10.1186/s40729-019-0160-z
  • Mödinger Y, Teixeira GQ, Neidlinger-Wilke C, Ignatius A. Role of the complement system in the response to orthopedic biomaterials. Int J Mol Sci. 2018;19(11):3367. doi:10.3390/ijms19113367
  • Bindja J, Weiss ME, Schmolz M, et al. Synthetic ligands against TLR2-9 in TruCultureTM - whole blood assays distinguish clinical stages of SIRS (trauma) and sepsis. Trauma Shock Inflamm Sepsis. 2010;393:55–63.
  • Nalos M, Huang S, Sluyter R, et al. ‘Host tissue damage’ signal ATP impairs IL-12 and IFNγ secretion in LPS stimulated whole human blood. Intensive Care Med. 2008;34(10):1891. doi:10.1007/s00134-008-1156-y
  • Hung WT, Collings AF, Low J. Erythrocyte sedimentation rate studies in whole human blood. Phys Med Biol. 1994;39(11):1855–1873. doi:10.1088/0031-9155/39/11/005
  • Yin W, Xu Z, Sheng J, Xie X, Zhang C. Erythrocyte sedimentation rate and fibrinogen concentration of whole blood influences the cellular composition of platelet-rich plasma obtained from centrifugation methods. Exp Ther Med. 2017;14(3):1909–1918. doi:10.3892/etm.2017.4724
  • Taylor JR. On the nature and cause of the buffy coat of the blood. Lond Med Phys J. 1831;11(63):187–192.
  • Chandler AB. In vitro thrombotic coagulation of the blood; a method for producing a thrombus. Lab Invest. 1958;7(2):110–114.
  • Slee JB, Alferiev IS, Levy RJ, Stachelek SJ. The use of the ex vivo Chandler Loop Apparatus to assess the biocompatibility of modified polymeric blood conduits. J Vis Exp. 2014;(90). doi:10.3791/51871
  • Jerram A, Guy TV, Beutler L, et al. Effects of storage time and temperature on highly multiparametric flow analysis of peripheral blood samples; implications for clinical trial samples. Biosci Rep. 2021;41(2):BSR20203827. doi:10.1042/BSR20203827
  • Goods BA, Vahey JM, Steinschneider AF, Askenase MH, Sansing L, Christopher Love J. Blood handling and leukocyte isolation methods impact the global transcriptome of immune cells. BMC Immunol. 2018;19(1):30. doi:10.1186/s12865-018-0268-6
  • Posevitz-Fejfár A, Posevitz V, Gross CC, et al. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking. PLoS One. 2014;9(12):e115920. doi:10.1371/journal.pone.0115920
  • Diks AM, Bonroy C, Teodosio C, et al. Impact of blood storage and sample handling on quality of high dimensional flow cytometric data in multicenter clinical research. J Immunol Methods. 2019;475:112616. doi:10.1016/j.jim.2019.06.007
  • He D, Yang CX, Sahin B, et al. Whole blood vs PBMC: compartmental differences in gene expression profiling exemplified in asthma. Allergy Asthma Clin Immunol. 2019;15(1):67. doi:10.1186/s13223-019-0382-x
  • Gottfried-Blackmore A, Rubin SJS, Bai L, et al. Effects of processing conditions on stability of immune analytes in human blood. Sci Rep. 2020;10(1, Art. no. 1). doi:10.1038/s41598-020-74274-8
  • Duffy D, Rouilly V, Libri V, et al. Functional Analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity. 2014;40(3):436–450. doi:10.1016/j.immuni.2014.03.002
  • Duffy D, Rouilly V, Braudeau C, et al. Standardized whole blood stimulation improves immunomonitoring of induced immune responses in multi-center study. Clin Immunol. 2017;183:325–335. doi:10.1016/j.clim.2017.09.019
  • Appay V, Reynard S, Voelter V, Romero P, Speiser D, Leyvraz S. Immuno-monitoring of CD8+ T cells in whole blood versus PBMC samples. J Immunol Methods. 2006;309(1–2):192–199. doi:10.1016/j.jim.2005.11.007
  • Rus H, Cudrici C, Niculescu F. The role of the complement system in innate immunity. Immunol Res. 2005;33(2):103–112. doi:10.1385/IR:33:2:103
  • Brooks P, Emery P, Evans JF, et al. Interpreting the clinical significance of the differential inhibition of cyclooxygenase-1 and cyclooxygenase-2. Rheumatology. 1999;38(8):779–788. doi:10.1093/rheumatology/38.8.779
  • Aasvang EK, Pitter S, Hansen CP, et al. Preoperative TruCulture® whole blood cytokine response predicts post-operative inflammation in pancreaticoduodenectomy patients-A pilot cohort study. Scand J Immunol. 2020;92(3):e12930. doi:10.1111/sji.12930
  • Del Valle DM, Kim-Schulze S, Huang -H-H, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nature Med. 2020;26(10, Art. no. 10):1636–1643. doi:10.1038/s41591-020-1051-9
  • Niu X, Chen G. Clinical biomarkers and pathogenic-related cytokines in rheumatoid arthritis. J Immunol Res. 2014;2014:1–7. doi:10.1155/2014/698192
  • Monastero RN, Pentyala S. Cytokines as biomarkers and their respective clinical cutoff levels. Int J Inflam. 2017;2017. doi:10.1155/2017/4309485
  • Divekar AA, Zaiss DMW, Lee FE-H, et al. Protein vaccines induce uncommitted IL-2-secreting human and mouse CD4 T cells, whereas infections induce more IFN-gamma-secreting cells. J Immunol. 2006;176(3):1465–1473. doi:10.4049/jimmunol.176.3.1465
  • Damsgaard CT, Lauritzen L, Calder PC, Kjær TMR, Frøkiær H. Whole-blood culture is a valid low-cost method to measure monocytic cytokines — a comparison of cytokine production in cultures of human whole-blood, mononuclear cells and monocytes. J Immunol Methods. 2009;340(2):95–101. doi:10.1016/j.jim.2008.10.005
  • Vignali DA. Multiplexed particle-based flow cytometric assays. J Immunol Methods. 2000;243(1–2):243–255. doi:10.1016/s0022-1759(00)00238-6
  • Rodrigues KB, Dufort MJ, Llibre A, et al. Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes. Diabetologia. 2020;63(8):1576–1587. doi:10.1007/s00125-020-05179-4
  • Drabe CH, Sørensen SS, Rasmussen A, et al. Immune function as predictor of infectious complications and clinical outcome in patients undergoing solid organ transplantation (the ImmuneMo:SOT study): a prospective non-interventional observational trial. BMC Infect Dis. 2019;19(1):573. doi:10.1186/s12879-019-4207-9
  • Klimosch S, Caballé-Serrano J, Knorpp T, Munar-Frau A, Schaefer B, Schmolz M. Surgically used barrier membranes show distinct reaction profiles in an innovative human whole blood culture system. Res Square. 2022. doi:10.21203/rs.3.rs-1243026/v1
  • Urrutia A, Duffy D, Rouilly V, et al. Standardized whole-blood transcriptional profiling enables the deconvolution of complex induced immune responses. Cell Rep. 2016;16(10):2777–2791. doi:10.1016/j.celrep.2016.08.011
  • Yang Z, Wu C, Shi H, et al. Advances in barrier membranes for guided bone regeneration techniques. Front Bioeng Biotechnol. 2022;10:921576. doi:10.3389/fbioe.2022.921576
  • Proudfoot AEI, Handel TM, Johnson Z, et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A. 2003;100(4):1885–1890. doi:10.1073/pnas.0334864100
  • Manka SW, Bihan D, Farndale RW. Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Sci Rep. 2019;9(1):18785. doi:10.1038/s41598-019-55266-9
  • Weber M, Steinle H, Golombek S, et al. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol. 2018;6:99. doi:10.3389/fbioe.2018.00099
  • Braune S, Latour RA, Reinthaler M, Landmesser U, Lendlein A, Jung F. In vitro thrombogenicity testing of biomaterials. Adv Healthcare Mater. 2019;8(21):1900527. doi:10.1002/adhm.201900527
  • van Oeveren W. Obstacles in haemocompatibility testing. Scientifica. 2013;2013:392584. doi:10.1155/2013/392584