204
Views
2
CrossRef citations to date
0
Altmetric
Review

Arsenic in your food: potential health hazards from arsenic found in rice

, , , &
Pages 1-10 | Published online: 09 Jan 2015

References

  • Food and Agriculture Organization of the United Nations. Rice Market Monitor. 12(1); 2014. Available from: http://www.fao.org/economic/RMM. Accessed September 1, 2014.
  • Signes-Pastor AJ, Mitra K, Sarkhel S, et al. Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. J Agric Food Chem. 2008;56:9469–9474.
  • Zhao FJ, McGrath SP, Meharg AA. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol. 2010;61:535–559.
  • Codex Alimentarius Commission. Joint FAO/WHO food standards programme. 37th session. Distribution of the report of the eighth session of the Codex Committee on contaminants in foods, Geneva, Switzerland; 2014. Available from: http://www.fao.org/. Accessed September 1, 2014.
  • European Food Safety Authority. Panel on contaminants in the food chain. Scientific opinion on arsenic in food. EFSA J. 2009;7:1351.
  • Food and Agriculture Organization/World Health Organization (FAO/OMS). Summary and conclusions of the seventy-second meeting of the joint FAO/WHO expert committee on food additives (JECFA). FAO, Rome, Italy; WHO, Geneva, Switzerland; 2010. Available from: http://www.who.int/foodsafety/chem/summary72_rev.pdf. Accessed September 1, 2014.
  • Selene CH, Chou J, De Rosa CT. Case studies – arsenic. Int J Hyg Environ Health. 2003;206:381–386.
  • Mandal BK, Suzuki KT. Arsenic round the world; a review. Talanta. 2002;58:201–235.
  • Agency for Toxic Substances and Disease Registry. Decision guide for identifying substance-specific data needs related to toxicological profiles; notice. US department of health and human services, public health service, Atlanta, US. Fed Regist. 1989;54:37618–37634.
  • Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. US Department of Health and Human Services, Public Health Service, Atlanta, US; 2007. Available from: http://www.atsdr.cdc.gov/toxprofiles/tp2.pdf. Accessed September 1, 2014.
  • Meharg AA, Williams PN, Deacon CM, et al. Urinary excretion of arsenic following rice consumption. Environ Pollut. 2014;194:181–187.
  • Ackerman AH, Creed PA, Parks AN, et al. Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environ Sci Technol. 2005;39:5241–5246.
  • Laparra JM, Vélez D, Barberá R, Farré R, Montoro R. Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments. J Agric Food Chem. 2005;53:8829–8833.
  • Sun GX, Van de Wiele T, Alava P, Tack F, Du Laing G. Arsenic in cooked rice: effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract. Environ Pollut. 2012;162:241–246.
  • Juhasz AL, Smith E, Weber J, et al. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ Health Perspect. 2006;114:1826–1831.
  • Hughes MF, Kenyon EM, Edwards BC, Mitchell CT, Del Razo LM, Thomas DJ. Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol. 2003;191:202–210.
  • Vahter M. . Metabolism of arsenic. In: Fowler B, editor. Biological and Environmental Effects of Arsenic. Oxford: Elsevier Science; 1983:171–197.
  • Dopp E, Hartmann LM, von Recklinghausen U, et al. Forced uptake of trivalent and pentavalent methylated and inorganic arsenic and its cyto/genotoxicity in fibroblasts and hepatoma cells. Toxicol Sci. 2005;87:46–56.
  • Dopp E, Von Recklinghausen U, Hartmann LM. Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes. Drug Metab Dispos. 2008;36:971–979.
  • Hayakawa T, Kobayashi Y, Cui X, Hirano S. A new metabolic pathway of arsenite: arsenic – glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol. 2005;79:183–191.
  • Buchet JP, Lauwerys R, Roels H. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int Arch Occup Environ Health. 1981;48:71–79.
  • Sanchez-Rodas D, Geiszinger A, Gómez-Ariza JL, Francesconi KA. Determination of an arsenosugar in oyster extracts by liquid chromatography-electrospray mass spectrometry and liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic fluorescence spectrometry. Analyst. 2002;127:60–65.
  • Cascio C, Raab A, Jenkins RO, Feldmann J, Meharg AA, Haris PI. The impact of a rice based diet on urinary arsenic. J Environ Monit. 2011;13:257–265.
  • Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR. Rice consumption and urinary arsenic concentrations in US children. Environ Health Perspect. 2012;120:1418–1424.
  • Gilbert-Diamond D, Cottingham KL, Gruber JF. Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci U S A. 2011;108:20656–20660.
  • Roychowdhury T, Tokunaga H, Ando M. Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic affected area of West Bengal, India. Sci Total Environ. 2003;308:15–35.
  • Chakraborti D, Mukherjee SC, Pati S, et al. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Persp. 2003;111:1194–1201.
  • Kurzius-Spencer M, O’Rourke MK, Hsu CH, Hartz V, Harris RB, Burgess JL. Measured versus modeled dietary arsenic and relation to urinary arsenic excretion and total exposure. J Expo Sci Environ Epidemiol. 2013;23:442–449.
  • International Agency for Cancer Research. Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum. 2004;84:1–477.
  • Yu G, Sun D, Zheng Y. Health effects of exposure to natural arsenic in groundwater and coal in China: an overview of occurrence. Environ Health Persp. 2007;115:636–642.
  • Tsai SY, Chou HY, The HW, Chen CM, Chen CJ. The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology. 2003;24:747–753.
  • Calderón J, Navarro ME, Jimenez-Capdeville ME, et al. Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res. 2001;85:69–76.
  • Milton AH, Smith W, Rahman B, et al. Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology. 2005;16:82–86.
  • Chen H, Li SF, Liu J, Diwan BA, Barrett JC, Waalkes MP. Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis. Carcinogenesis. 2004;25:1779–1786.
  • Lee MY, Bae ON, Chung SM, Kang KT, Lee JY, Chung JH. Enhancement of platelet aggregation and thrombus formation by arsenic in drinking water: a contributing factor to cardiovascular disease. Toxicol Appl Pharm. 2002;179:83–88.
  • Tseng CH, Chong CK, Tseng CP, et al. Long-term arsenic exposure and ischemic heart disease in arseniasis hyperendemic villages in Taiwan. Toxicol Lett. 2003;137:15–21.
  • Milton AH, Rahman M. Respiratory effects and arsenic contaminated well water in Bangladesh. Int J Environ Health Res. 2002;12:175–179.
  • Bodwell JE, Kingsley LA, Hamilton JW. Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain. Chem Res Toxicol. 2004;17:1064–1076.
  • Tseng CH, Tseng CP, Chiou HY, Hsueh YM, Chong CK, Chen CJ. Epidemiologic evidence of diabetogenic effect of arsenic. Toxicol Lett. 2002;133:69–76.
  • Chen CJ, Wang SL, Chiou JM, et al. Arsenic and diabetes and hypertension in human populations: a review. Toxicol Appl Pharm. 2007;222:298–304.
  • Navas-Acien A, Guallar E. Measuring arsenic exposure, metabolism, and biological effects: the role of urine proteomics. Toxicol Sci. 2008;106:1–4.
  • Argos M, Kalra T, Rathouz PJ, et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS):a prospective cohort study. Lancet. 2010;376:252–258.
  • Chen Y, Ahsan H, Slavkovich V, et al. No association between arsenic exposure from drinking water and diabetes mellitus: a cross-sectional study in Bangladesh. Environ Health Perspect. 2010;118:1299–1305.
  • Sun GX, Williams PN, Carey AM. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol. 2008;42:7542–7546.
  • Lombi E, Scheckel KG, Pallon J, Carey AM, Zhu YG, Meharg AA. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 2009;184:193–201.
  • Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol. 2006;40:4903–4908.
  • Xie ZM, Huang CY. Control of arsenic toxicity in rice plants grown on an arsenicpolluted paddy soil. Commun Soil Sci Plant Anal. 1998;29:2471–2477.
  • Meharg AA, Rahman M. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol. 2003;37:229–234.
  • Islam M, Jahiruddin M, Islam S. Assessment of arsenic in the water-soil-plant systems in gangetic floodplains of Bangladesh. Asian J Plant Sci. 2004;3:489–493.
  • Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol. 2005;39:5531–5540.
  • Ohno K, Yanase T, Matsuo Y, Kimura T, Hamidur Rahman M, Magara Y. Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci Total Environ. 2007;381:68–76.
  • Meharg AA, Williams PN, Adamako E. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol. 2009;43:1612–1617.
  • Heitkemper DT, Vela NP, Stewart KR, Westphal CS. Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J Anal Atom Spectr. 2001;16:299–306.
  • Liu H, Probst A, Liao B. Metal contamination of soils and crops affected by the chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ. 2005;339:153–166.
  • Naito S, Matsumoto E, Shindoh K, Nishimura T. Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem. 2015;168:294–301.
  • Burló F, Ramírez-Gandolfo A, Signes-Pastor AJ, Haris PI, Carbonell-Barrachina AA. Arsenic contents in Spanish infant rice, pureed infant foods, and rice. J Food Sci. 2012;71:T15–T19.
  • Lin HT, Wong SS, Li GC. Heavy metal content of rice and shellfish in Taiwan. J Food Drug Anal. 2004;12:167–174.
  • Schoof RA, Yost LJ, Crecelius E, Irgolic K, Goessler W, Guo HR. Dietary arsenic intake in Taiwanese districts with elevated arsenic in drinking water. Hum Ecol Risk Ass. 1998;4:117–135.
  • Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM. A market basket survey of inorganic arsenic in food. Food Chem Toxicol. 1999;37:839–846.
  • Phuong TD, Chuong PV, Khiem DT, Kokot S. Elemental content of Vietnamese rice. Part 1. Sampling, analysis and comparison with previous studies. Analyst. 1999;124:553–560.
  • Mondal D, Polya DA. Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment. App Geochem. 2008;23:2987–2998.
  • Pal A, Chowdhury UK, Mondal D, Das B, Nayak B, Ghosh A. Arsenic burden from cooked rice in the populations of arsenic affected and nonaffected areas and Kolkata city in West-Bengal, India. Environ Sci Technol. 2009;43:3349–3355.
  • Meharg AA, Sun G, Williams PN, et al. Inorganic arsenic levels in baby rice are of concern. Environ Pollut. 2008;152:746–749.
  • Carbonell-Barrachina AA, Wu X, Ramírez-Gandolfo A, et al. Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Environ Pollut. 2012;163:77–83.
  • Hernández-Martínez R, Navarro-Blasco I. Survey of total mercury and arsenic content in infant cereals marketed in Spain and estimated dietary intake. Food Cont. 2013;30:423–432.
  • Juskelis R, Li W, Nelson J, Cappozzo JC. Arsenic speciation in rice cereals for infants. J Agri Food Chem. 2013;61:10670–10676.
  • National Institute of Diabetes and Digestive and Kidney Diseases. Celiac disease; 2014. Available from: http://digestive.niddk.nih.gov/ddiseases/pubs/celiac/index.aspx. Accessed September 1, 2014.
  • Green PH, Cellier C. Celiac disease. Review. New England J Med. 2007;357:1731–1743.
  • Munera-Picazo S, Ramírez-Gandolfo A, Burló F, Carbonell-Barrachina AA. Inorganic and total arsenic contents in rice-based foods for children with celiac disease. J Food Sci. 2014;79:122–128.
  • Munera-Picazo S, Burló F, Carbonell-Barrachina AA. Arsenic speciation in rice-based food for adults with celiac disease. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31:1358–1366.
  • National Institute of Diabetes and Digestive and Kidney Diseases. Lactose intolerance; 2014. Available from: http://digestive.niddk.nih.gov/ddiseases/pubs/lactoseintolerance/. Accessed September 1, 2014.
  • Meharg AA, Deacon C, Campbell RC, et al. Inorganic arsenic levels in rice milk exceed EU and US drinking water standards. J Environ Monitor. 2008;10:428–431.
  • Norton GJ, Islam MR, Deacon CM, et al. Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environ Sci Technol. 2009;43:6070–6075.
  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol. 2009;43:9361–9367.
  • Moreno-Jiménez E, Meharg AA, Smolders E, et al. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci Total Environ. 2014;485:468–473.
  • Oikawa A, Matsuda F, Kusano M, Okazaki Y, Saito K. Rice metabolomics. Rice. 2008;1:63–71.
  • Sengupta MK, Hossain MA, Mukherjee A. Arsenic burden of cooked rice: traditional and modern methods. Food Chem Toxicol. 2006;44:1823–1829.
  • Signes A, Mitra K, Burló F, Carbonell-Barrachina AA. Effect of two different rice dehusking procedures on total arsenic concentration in rice. Eur Food Res Technol. 2008;226:561–567.
  • Munera-Picazo S, Ramírez-Gandolfo A, Cascio C, et al. Arsenic in rice-based infant foods. In: Watson RR, Preedy VR, Zibadi S, editors. Wheat and Rice in Disease Prevention and Health. Benefits, Risks and Mechanisms of Whole Grains in Health Promotion. Amsterdam: Elsevier and AP; 2014:377–391.
  • Signes A, Mitra K, Burlo F, Carbonell-Barrachina AA. Contribution of water and cooked rice to an estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. Food Addit Contam. 2008;25:41–50.
  • Smith NM, Lee R, Heitkemper DT, Cafferky KD, Haque A, Henderson AK. Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Sci Total Environ. 2006;370:294–301.
  • Bae M, Watanabe C, Inaoka T, et al. Arsenic in cooked rice in Bangladesh. Lancet. 2002;360:1839–1840.
  • Rahman MA, Hasegawa H, Rahman MM, Miah MAM. Influence of cooking method on arsenic retention in cooked rice related to dietary exposure. Sci Total Environ. 2006;370:51–60.
  • Raab A, Baskaran C, Feldmann J, Meharg AA. Cooking rice in a high water to rice ratio reduces inorganic arsenic content. J Environ Monit. 2009;11:41–44.
  • Van Elteren JT, Slejkovec Z. Ion-exchange separation of eight arsenic compounds by high-performance liquid chromatography – UV decomposition – hydride generation – atomic fluorescence spectrometry and stability test for food treatment procedures. J Chromatogr. 1997;789:339–340.
  • Devesa V, Velez D, Montoro R. Effect of thermal treatments on arsenic species in food. Food Chem Toxicol. 2008;46:1–8.
  • Hanaoka K, Goessler W, Ohno H, Irgolic KJ, Kaise J. Formation of toxic arsenical in roasted muscles of marine animals. App Organomet Chem. 2001;15:61–66.
  • Torres-Escribano S, Leal M, Vélez D, Montoro R. Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments. Environ Sci Technol. 2008;42:3867–3872.