68
Views
5
CrossRef citations to date
0
Altmetric
Original Research

UPLC-Q-TOF-MS profiling of the hippocampus reveals metabolite biomarkers for the impact of Dl-3-n-butylphthalide on the lipopolysaccharide-induced rat model of depression

, , , , , , & show all
Pages 1939-1950 | Published online: 10 Jul 2019

References

  • Xu J, Zhao Y, Aisa HA. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pharm Biol. 2017;55(1):2095–2101. doi:10.1080/13880209.2016.125703228832232
  • Zhang Y, Liu L, Peng YL, et al. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci Ther. 2014;20(2):119–124. doi:10.1111/cns.1217024279434
  • Dang R, Zhou X, Tang M, et al. Fish oil supplementation attenuates neuroinflammation and alleviates depressive-like behavior in rats submitted to repeated lipopolysaccharide. Eur J Nutr. 2017;57(3):893–906. doi:10.1007/s00394-016-1373-z28058465
  • Lee DS, Kwon KH, Cheong SH. Taurine chloramine suppresses LPS-induced neuroinflammatory responses through Nrf2-mediated heme oxygenase-1 expression in mouse BV2 microglial cells. Adv Exp Med Biol. 2017;975:131–143.28849450
  • Zhao X, Cao F, Liu Q, et al. Behavioral, inflammatory and neurochemical disturbances in LPS and UCMS-induced mouse models of depression. Behav Brain Res. 2019;364:494–502. doi:10.1016/j.bbr.2017.05.06428572058
  • Yang M, Dang R, Xu P, et al. Dl-3-n-butylphthalide improves lipopolysaccharide-induced depressive-like behavior in rats: involvement of Nrf2 and NF-κB pathways. Psychopharmacology (Berl). 2018;235(9):2573–2585. doi:10.1007/s00213-018-4949-x29943092
  • Ma M, Ren Q, Zhang JC, Hashimoto K. Effects of brilliant blue G on serum tumor necrosis factor-α levels and depression-like behavior in mice after lipopolysaccharide administration. Clin Psychopharmacol Neurosci. 2014;12(1):31–36.24851118
  • Abdoulaye IA, Guo YJ. A review of recent advances in neuroprotective potential of 3-n-butylphthalide and its derivatives. Biomed Res Int. 2016;2016:1–9. doi:10.1155/2016/5012341
  • Qi Q, Xu J, Lv P, et al. DL-3-n-butylphthalide alleviates vascular cognitive impairment induced by chronic cerebral hypoperfusion by activating the Akt/Nrf2 signaling pathway in the hippocampus of rats. Neurosci Lett. 2018;672:59–64. doi:10.1016/j.neulet.2017.11.05129175633
  • Liu CY, Zhao ZH, Chen ZT, et al. DL-3-n-butylphthalide protects endothelial cells against advanced glycation end product-induced injury by attenuating oxidative stress and inflammation responses. ExperTher Med. 2017;14(3):2241–2248. doi:10.3892/etm.2017.4784
  • Peisl BYL, Schymanski EL, Wilmes P. Dark matter in host-microbiome metabolomics: tackling the unknowns–A review. Anal Chim Acta. 2018;1037:13–27. doi:10.1016/j.aca.2017.12.03430292286
  • Cai HL, Jiang P, Tan QY, et al. Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways. Transl Psychiatry. 2017;7(5):e1130. doi:10.1038/tp.2017.16028509906
  • Kuhn M, Sühs KW, Akmatov MK, et al. Mass-spectrometric profiling of cerebrospinal fluid reveals metabolite biomarkers for CNS involvement in varicella zoster virus reactivation. J Neuroinflammation. 2018;15(1):20. doi:10.1186/s12974-018-1220-729343258
  • Miao X, Xiao B, Shui S, et al. Metabolomics analysis of serum reveals the effect of Danggui Buxue Tang on fatigued mice induced by exhausting physical exercise. J PharmBiomed Anal. 2018;151:301–309.
  • Sun L, Li J, Zhou K, et al. Metabolomic analysis reveals metabolic disturbance in the cortex and hippocampus of subchronic MK-801 treated rats. PLoS One. 2013;8(4):e60598. doi:10.1371/journal.pone.006059823577129
  • Liu X, Zheng P, Zhao X, et al. Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography–mass spectrometry. J Proteome Res. 2015;14(5):2322–2330. doi:10.1021/acs.jproteome.5b0014425784130
  • Ni Y, Su M, Lin J, et al. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett. 2008;582(17):2627–2636. doi:10.1016/j.febslet.2008.06.04018586036
  • Wang C, Lou Y, Xu J, et al. Endoplasmic reticulum stress and NF-κB pathway in salidroside mediated neuroprotection: potential of salidroside in neurodegenerative diseases. Am J Chin Med. 2017;45(7):1459–1475. doi:10.1142/S0192415X1750079328946765
  • Zheng B, Zhou Y, Zhang H, et al. Dl-3-n-butylphthalide prevents the disruption of blood-spinal cord barrier via inhibiting endoplasmic reticulum stress following spinal cord injury. Int J Biol Sci. 2017;13(12):1520–1531. doi:10.7150/ijbs.2110729230100
  • Wu Y, Fu Y, Rao C, et al. Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression. Behav Brain Res. 2016;308:115–127. doi:10.1016/j.bbr.2016.04.03227102340
  • Duman RS, Sanacora G, Krystal JH. Altered Connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102(1):75–90. doi:10.1016/j.neuron.2019.03.01330946828
  • Croarkin PE, Levinson AJ, Daskalakis ZJ. Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev. 2011;35(3):818–825. doi:10.1016/j.neubiorev.2010.10.00220946914
  • Drouet JB, Fauvelle F, Maunoir-Regimbal S, et al. Differences in prefrontal cortex GABA/glutamate ratio after acute restraint stress in rats are associated with specific behavioral and neurobiological patterns. Neuroscience. 2016;285(4):155–165. doi:10.1016/j.neuroscience.2014.10.058
  • Ren Z, Pribiag H, Jefferson SJ, et al. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. Biol Psychiatry. 2016;80(6):457–468. doi:10.1016/j.biopsych.2016.02.00927062563
  • Yang P, Li X, Ni J, et al. Alterations of amino acid level in depressed rat brain. Korean J Physiol Pharmacol. 2014;18(5):371–376. doi:10.4196/kjpp.2014.18.5.37125352755
  • Gormanns P, Mueller NS, Ditzen C, et al. Phenome-transcriptome correlation unravels anxiety and depression related pathways. J Psychiatr Res. 2011;45(7):973–979. doi:10.1016/j.jpsychires.2010.12.01021255794
  • Ivnitsky JJ, Schäfer TV, Malakhovsky VN, Rejniuk VL. Intermediates of krebs cycle correct the depression of the whole body oxygen consumption and lethal cooling in barbiturate poisoning in rat. Toxicology. 2004;202(3):165–172. doi:10.1016/j.tox.2004.05.00515337580
  • Mittelstra㟠K, Waldenberger M. DNA methylation in human lipid metabolism and related diseases. CurrOpinLipidol. 2018;29(2):116–124.
  • Tang QQ. Lipid metabolism and diseases. Sci Bull. 2016;61(19):1471. doi:10.1007/s11434-016-1174-z
  • He Z, Zhou Y, Li L, et al. Dl-3-n-butylphthalide attenuates acute inflammatory activation in rats with spinal cord injury by inhibiting microglial TLR4/NF-κB signalling. J Cell Mol Med. 2017;21(11):3010–3022. doi:10.1111/jcmm.1321228842949
  • Zhao H, Chen Z, Xie LJ, Liu GF. Suppression of TLR4/NF-κB signaling pathway improves cerebral ischemia–reperfusion injury in rats. Mol Neurobiol. 2017;55(5):4311–4319.28624894
  • Fan K, Lin L, Ai Q, et al. Lipopolysaccharide-induced dephosphorylation of AMPK-activated protein kinase potentiates inflammatory injuryvia repression of ULK1-dependent autophagy. Front Immunol. 2018;9:1464. doi:10.3389/fimmu.2018.0146429988556
  • Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245.27416781