91
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Conditioned taste aversion memory extinction temporally induces insular cortical BDNF release and inhibits neuronal apoptosis

, , &
Pages 2403-2414 | Published online: 22 Aug 2019

References

  • Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4:299–309. doi:10.1038/nrn107812671646
  • Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736. doi:10.1146/annurev.neuro.24.1.67711520916
  • Ortiz JB, Anglin JM, Daas EJ, Paode PR, Nishimura K, Conrad CD. BDNF and TrkB mediate the improvement from chronic stress-induced spatial memory deficits and CA3 dendritic retraction. Neuroscience. 2018;388:330–346. doi:10.1016/j.neuroscience.2018.07.04930076998
  • Rosas-Vidal LE, Do-Monte FH, Sotres-Bayon F, Quirk GJ. Hippocampal–prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology. 2014;39:2161–2169. doi:10.1038/npp.2014.6424625752
  • Bredy TW, Wu H, Crego C, et al. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learning Memory. 2007;14:268–276. doi:10.1101/lm.50090717522015
  • Chen ZY, Patel PD, Sant G, et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci. 2004;24:4401–4411. doi:10.1523/JNEUROSCI.0348-04.200415128854
  • Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–269. doi:10.1016/s0092-8674(03)00035-712553913
  • Yu H, Wang Y, Pattwell S, et al. Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. J Neurosci. 2009;29:4056–4064. doi:10.1523/JNEUROSCI.5539-08.200919339601
  • Soliman F, Glatt CE, Bath KG, et al. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science. 2010;327:863–866. doi:10.1126/science.118188620075215
  • Xin J, Ma L, Zhang TY, et al. Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction. J Neurosci. 2014;34:7302–7313. doi:10.1523/JNEUROSCI.5030-13.201424849362
  • Brooks DC, Vaughn JM, Freeman AJ, Woods AM. An extinction cue reduces spontaneous recovery of ataxic ethanol tolerance in rats. Psychopharmacology. 2004;176:256–265. doi:10.1007/s00213-004-1882-y15164156
  • Berman DE, Dudai Y. Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science. 2001;291:2417–2419. doi:10.1126/science.105816511264539
  • Mickley GA, Kenmuir CL, McMullen CA, et al. Dynamic processing of taste aversion extinction in the brain. Brain Res. 2004;1016:79–89. doi:10.1016/j.brainres.2004.04.07115234255
  • Akirav I, Khatsrinov V, Vouimba RM, et al. Extinction of conditioned taste aversion depends on functional protein synthesis but not on NMDA receptor activation in the ventromedial prefrontal cortex. Learning Memory. 2006;13:254–258. doi:10.1101/lm.19170616741279
  • Gallo M, Bielavska E, Roldan G, Bures J. Tetrodotoxin inactivation of the gustatory cortex disrupts the effect of the N-methyl-D-aspartate antagonist ketamine on latent inhibition of conditioned taste aversion in rats. Neurosci Lett. 1998;240:61–64. doi:10.1016/s0304-3940(97)00897-59486472
  • Yasoshima Y, Yamamoto T. Short-term and long-term excitability changes of the insular cortical neurons after the acquisition of taste aversion learning in behaving rats. Neuroscience. 1998;84:1–5. doi:10.1016/s0306-4522(97)00636-29522356
  • Accolla R, Carleton A. Internal body state influences topographical plasticity of sensory representations in the rat gustatory cortex. Proc Natl Acad Sci U S A. 2008;105:4010–4015. doi:10.1073/pnas.070892710518305172
  • Rivera-Olvera A, Nelson-Mora J, Gonsebatt ME, Escobar ML. Extinction of aversive taste memory homeostatically prevents the maintenance of in vivo insular cortex LTP: calcineurin participation. Neurobiol Learn Mem. 2018;154:54–61. doi:10.1016/j.nlm.2018.04.00529631000
  • Rodriguez-Serrano LM, Ramirez-Leon B, Rodriguez-Duran LF, et al. Acute infusion of brain-derived neurotrophic factor in the insular cortex promotes conditioned taste aversion extinction. Neurobiol Learn Mem. 2014;116:139–144. doi:10.1016/j.nlm.2014.10.00725451308
  • Hadamitzky M, Orlowski K, Schwitalla JC, et al. Transient inhibition of protein synthesis in the rat insular cortex delays extinction of conditioned taste aversion with cyclosporine A. Neurobiol Learn Mem. 2016;133:129–135. doi:10.1016/j.nlm.2016.06.00827311758
  • Desmedt A, Hazvi S, Dudai Y. Differential pattern of cAMP response element-binding protein activation in the rat brain after conditioned aversion as a function of the associative process engaged: taste versus context association. J Neurosci. 2003;23:6102–6110.12853429
  • Ma L, Wang DD, Zhang TY, et al. Region-specific involvement of BDNF secretion and synthesis in conditioned taste aversion memory formation. J Neurosci. 2011;31:2079–2090. doi:10.1523/JNEUROSCI.5348-10.201121307245
  • Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Amsterdam; Boston: Academic Press/Elsevier; 2007.
  • Mickley GA, Kenmuir CL, Yocom AM, Wellman JA, Biada JM. A role for prefrontal cortex in the extinction of a conditioned taste aversion. Brain Res. 2005;1051:176–182. doi:10.1016/j.brainres.2005.05.03315961067
  • Kesslak JP, So V, Choi J, Cotman CW, Gomez-Pinilla F. Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance? Behav Neurosci. 1998;112:1012–1019.9733207
  • Hall J, Thomas KL, Everitt BJ. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci. 2000;3:533–535. doi:10.1038/7569810816306
  • Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry. 2007;12:656–670. doi:10.1038/sj.mp.400195717264839
  • Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ. Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci. 2006;9:870–872. doi:10.1038/nn171816783370
  • Castillo DV, Figueroa-Guzman Y, Escobar ML. Brain-derived neurotrophic factor enhances conditioned taste aversion retention. Brain Res. 2006;1067:250–255. doi:10.1016/j.brainres.2005.10.08516364259
  • Moguel-Gonzalez M, Gomez-Palacio-Schjetnan A, Escobar ML. BDNF reverses the CTA memory deficits produced by inhibition of protein synthesis. Neurobiol Learn Mem. 2008;90:584–587. doi:10.1016/j.nlm.2008.06.00318625328
  • Li WG, Liu MG, Deng S, et al. ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun. 2016;7:13770. doi:10.1038/ncomms1377027924869
  • Berman DE, Hazvi S, Stehberg J, et al. Conflicting processes in the extinction of conditioned taste aversion: behavioral and molecular aspects of latency, apparent stagnation, and spontaneous recovery. Learning Memory. 2003;10:16–25. doi:10.1101/lm.5370312551960
  • Hadamitzky M, Bosche K, Engler A, et al. Extinction of conditioned taste aversion is related to the aversion strength and associated with c-fos expression in the insular cortex. Neuroscience. 2015;303:34–41. doi:10.1016/j.neuroscience.2015.06.04026126924
  • Park H, Popescu A, Poo MM. Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP. Neuron. 2014;84:1009–1022. doi:10.1016/j.neuron.2014.10.04525467984
  • Mantilla CB, Gransee HM, Zhan WZ, Sieck GC. Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Exp Neurol. 2013;247:101–109. doi:10.1016/j.expneurol.2013.04.00223583688
  • Weishaupt N, Li S, Di Pardo A, Sipione S, Fouad K. Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury. Behav Brain Res. 2013;239:31–42. doi:10.1016/j.bbr.2012.10.04723131414
  • Singer W, Panford-Walsh R, Knipper M. The function of BDNF in the adult auditory system. Neuropharmacology. 2014;76:Pt C: 719–728. doi:10.1016/j.neuropharm.2013.05.008
  • Weber AJ, Harman CD. BDNF treatment and extended recovery from optic nerve trauma in the cat. Invest Ophthalmol Vis Sci. 2013;54:6594–6604. doi:10.1167/iovs.13-1268323989190
  • Bartolome F, de Las Cuevas N, Munoz U, et al. Impaired apoptosis in lymphoblasts from Alzheimer’s disease patients: cross-talk of Ca2+/calmodulin and ERK1/2 signaling pathways. Cell Mol Life Sci. 2007;64:1437–1448. doi:10.1007/s00018-007-7081-317502994
  • Ahn JY, Liu X, Liu Z, et al. Nuclear Akt associates with PKC-phosphorylated Ebp1, preventing DNA fragmentation by inhibition of caspase-activated DNase. Embo J. 2006;25:2083–2095. doi:10.1038/sj.emboj.760111116642037
  • Arthur JS, Fong AL, Dwyer JM, et al. Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J Neurosci. 2004;24:4324–4332. doi:10.1523/JNEUROSCI.5227-03.200415128846
  • Bjorkholm C, Monteggia LM. BDNF - a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–79. doi:10.1016/j.neuropharm.2015.10.03426519901
  • Lindholm JS, Castren E. Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front Behav Neurosci. 2014;8:143. doi:10.3389/fnbeh.2014.0014324817844
  • Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22:3251–3261.11943826
  • Zhan G, Huang N, Li S, et al. PGC-1alpha-FNDC5-BDNF signaling pathway in skeletal muscle confers resilience to stress in mice subjected to chronic social defeat. Psychopharmacology. 2018;235:3351–3358. doi:10.1007/s00213-018-5041-230259075
  • Yang C, Kobayashi S, Nakao K, et al. AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine. Biol Psychiatry. 2018;84:591–600. doi:10.1016/j.biopsych.2018.05.00729945718
  • Huang N, Yang C, Hua D, et al. Alterations in the BDNF-mTOR signaling pathway in the spinal cord contribute to hyperalgesia in a rodent model of chronic restraint stress. Neuroscience. 2019;409:142–151. doi:10.1016/j.neuroscience.2019.03.05230940563
  • Cannistraro PA, Rauch SL. Neural circuitry of anxiety: evidence from structural and functional neuroimaging studies. Psychopharmacol Bull. 2003;37:8–25.
  • Duits P, Cath DC, Lissek S, et al. Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depress Anxiety. 2015;32:239–253. doi:10.1002/da.2235325703487
  • Lebois LAM, Seligowski AV, Wolff JD, et al. Augmentation of extinction and inhibitory learning in anxiety and trauma-related disorders. Annu Rev Clin Psychol. 2019;15:257–284. doi:10.1146/annurev-clinpsy-050718-09563430698994