404
Views
9
CrossRef citations to date
0
Altmetric
Review

The Potential Role of Epigenetic Drugs in the Treatment of Anxiety Disorders

Pages 597-606 | Published online: 02 Mar 2020

References

  • Stein DJ, Scott KM, de Jonge P, Kessler RC. Epidemiology of anxiety disorders: from surveys to nosology and back. Dialogues Clin Neurosci. 2017;19:127–136.28867937
  • Maron E, Nutt D. Biological predictors of pharmacological therapy in anxiety disorders. Dialogues Clin Neurosci. 2015;17:305–317.26487811
  • Feldman RS. Understanding Psychology. New York: McGraw-Hill; 2011.
  • Sadock BJ, Sadock VA, Ruiz P. Kaplan & Sadock’s Synopsis of Psychiatry. New York: Wolters-Kluwer; 2015.
  • Thibaut F. Anxiety disorders: a review of current literature. Dialogues Clin Neurosci. 2017;19:87–88.28867933
  • Lüthi A, Lüscher C. Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci. 2014;17:1635–1643. doi:10.1038/nn.384925402855
  • Schiele MA, Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav. 2018;17:1–15. doi:10.1111/gbb.2018.17.issue-3
  • Shimada-Sugimoto M, Otowa T, Hettema JM. Genetics of anxiety disorders: genetic epidemiological and molecular studies in humans. Psychiatry Clin Neurosci. 2015;69:388–401. doi:10.1111/pcn.2015.69.issue-725762210
  • Taylor JM, Whalen PJ. Neuroimaging and anxiety: the neural substrates of pathological and non-pathological anxiety. Curr Psychiatry Rep. 2015;17:49. doi:10.1007/s11920-015-0586-925957101
  • O’Donnell JM, Bies RR, Shelton RC. Drug therapy of depression and anxiety disorders In: Brunton LL, Hilal-Dandan R, Knollmann BC, editors. The Pharmacological Basis of Therapeutics. New York: McGraw-Hill; 2018:267–277.
  • Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci. 2017;19:93–106.28867934
  • Soeter M, Kindt M. An abrupt transformation of phobic behavior after a post-retrieval amnesic agent. Biol Psychiatry. 2015;78:880–886. doi:10.1016/j.biopsych.2015.04.00625980916
  • Allis CD, Caparros M-L, Jenuwein T, Lachner M, Reinberg D. Overview and concepts In: Allis CD, Caparros M-L, Jenuwein T, Reinberg D, Lachner M, editors. Epigenetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2015:47–115.
  • Chhabra R. The epigenetics of noncoding RNA In: Tollefsbol TO, editor. Handbook of Epigenetics: The New Molecular and Medical Genetics. Cambridge, MA: Elsevier; 2017:47–59.
  • Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109. doi:10.1038/nrg314222215131
  • Peedicayil J, Grayson DR. An epigenetic basis for an omnigenic model of psychiatric disorders. J Theor Biol. 2018;443:52–55. doi:10.1016/j.jtbi.2018.01.02729378208
  • Peedicayil J, Grayson DR. Some implications of an epigenetic-based omnigenic model of psychiatric disorders. J Theor Biol. 2018;452:81–84. doi:10.1016/j.jtbi.2018.05.01429775682
  • Feinberg AP. Epigenetics at the epicenter of modern medicine. JAMA. 2008;299:1345–1350. doi:10.1001/jama.299.11.134518349095
  • Lee R, Avramopoulos D. Introduction to epigenetics in psychiatry In: Peedicayil J, Grayson DR, Avramopoulos D, editors. Epigenetics in Psychiatry. Waltham, MA, USA: Elsevier; 2014:3–25.
  • Marks IM. Genetics of fear and anxiety disorders. Br J Psychiatry. 1986;149:406–418. doi:10.1192/bjp.149.4.4063545353
  • Hettema JM, Neale MC, Kendler KS. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry. 2001;158:1568–1578. doi:10.1176/appi.ajp.158.10.156811578982
  • Bartlett AA, Singh R, Hunter RG. Anxiety and epigenetics. Adv Exp Biol Med. 2017;978:145–166.
  • Simmons RK, Howard JL, Simpson DN, Akil H, Clinton SM. DNA methylation in the developing hippocampus and amygdala of anxiety-prone versus risk- taking rats. Dev Neurosci. 2012;34:58–67. doi:10.1159/00033664122572572
  • Zhou R, Chen F, Chang F, Bai Y, Chen L. Persistent overexpression of DNA methyltransferase 1 attenuating GABAergic inhibition in basolateral amygdala accounts for anxiety in rat offspring exposed perinatally to low- dose bisphenol A. J Psychiatr Res. 2013;47:1535–1544. doi:10.1016/j.jpsychires.2013.05.01323791455
  • Zhu C, Liang M, Li Y, Feng X, Hong J, Zhou R. Involvement of epigenetic modifications of GABAergic interneurons in basolateral amygdala in anxiety-like phenotype of prenatally stressed mice. Int J Neuropsychopharmacol. 2018;21:570–581. doi:10.1093/ijnp/pyy00629471396
  • Kosten TA, Huang W, Nielsen DA. Sex and litter effects on anxiety and DNA methylation levels of stress and neurotrophin genes in adolescent rats. Dev Psychobiol. 2014;56:392–406. doi:10.1002/dev.v56.323460384
  • Mccoy CR, Glover ME, Flynn LT, et al. Altered DNA methylation in the developing brains of rats genetically prone to high versus low anxiety. J Neurosci. 2019;39:3144–3158. doi:10.1523/JNEUROSCI.1157-15.201930683683
  • Sagarkar S, Bhamburkar T, Shelkar G, Choudhary A, Kokare DM, Sakharkar AJ. Minimal traumatic brain injury causes persistent changes in DNA methylation at BDNF gene promoters in rat amygdala: a possible role in anxiety-like behaviors. Neurobiol Dis. 2017;106:101–109. doi:10.1016/j.nbd.2017.06.01628663119
  • Moonat S, Sakharkar AJ, Zhang H, Tang L, Pandey SC. Aberrant HDAC2-mediated histone modifications and synaptic plasticity in the amygdala predisposes to anxiety and alcoholism. Biol Psychiatry. 2013;73:763–773. doi:10.1016/j.biopsych.2013.01.01223485013
  • Suri D, Bhattacharya A, Vaidya VA. Early stress evokes temporally distinct consequences on the hippocampal transcriptome, anxiety and cognitive behaviour. Int J Neuropsychopharmacol. 2014;17:289–301. doi:10.1017/S146114571300100424025219
  • Patki G, Solanki N, Atrooz F, et al. Novel mechanistic insights into treadmill exercise based rescue of social defeat-induced anxiety-like behavior and memory impairment in rats. Physiol Behav. 2014;130:135–144. doi:10.1016/j.physbeh.2014.04.01124732411
  • Kumari A, Singh P, Baghel MS, Thakur MK. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain. Phyisiol Behav. 2016;158:34–42. doi:10.1016/j.physbeh.2016.02.032
  • Huang S, Dong W, Jiao Z, et al. Prenatal dexamethasone exposure induced alterations in neurobehavior and hippocampal glutamatergic system balance in female rat offspring. Toxicol Sci. 2019;171:369–384. doi:10.1093/toxsci/kfz163
  • Viana Borges J, Souza de Freitas B, Antoniazzi V, et al. Social isolation and social support at adulthood affect epigenetic mechanisms, brain-derived neurotrophic factor levels and behavior of chronically stressed rats. Behav Brain Res. 2019;366:36–44. doi:10.1016/j.bbr.2019.03.02530880220
  • Singh S, Siddiqui SA, Tripathy S, et al. Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Res Bull. 2018;140:355–364. doi:10.1016/j.brainresbull.2018.06.00429908895
  • Wang DY, Kosowan J, Samsom J, et al. Inhibition of the G9a/GLP histone methyltransferase complex modulates anxiety-related behavior in mice. Acta Pharmacol Sin. 2018;39:866–874. doi:10.1038/aps.2017.19029417943
  • Cittaro D, Lampis V, Luchetti A, et al. Histone modifications in a mouse model of early life adversities and panic disorder: role for Asic1 and neurodevelopmental genes. Sci Rep. 2016;6:25131. doi:10.1038/srep2513127121911
  • Aten S, Page CE, Kalidindi A, et al. miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior. Neuropharmacology. 2019;144:256–270. doi:10.1016/j.neuropharm.2018.10.02030342060
  • Cohen JL, Jackson NL, Ballestas ME, Webb WM, Lubin FD, Clinton SM. Amygdalar expression of the microRNA miR-101a and its target Ezh2 contribute to rodent anxiety-like behaviour. Eur J Neurosci. 2017;46:2241–2252. doi:10.1111/ejn.2017.46.issue-728612962
  • Liu Y, Liu D, Xu J, Jiang H, Pan F. Early adolescent stress-induced changes in prefrontal cortex miRNA-135a and hippocampal miRNA-16 in male rats. Dev Psychobiol. 2017;59:958–969. doi:10.1002/dev.v59.828944448
  • Hoban AE, Stilling RM, Moloney GM, et al. Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome. 2017;5:102. doi:10.1186/s40168-017-0321-328838324
  • Spadaro PA, Flavell CR, Widagdo J, et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol Psychiatry. 2015;78:848–859. doi:10.1016/j.biopsych.2015.02.00425792222
  • Lydiard RB. The role of GABA in anxiety disorders. J Clin Psychiatry. 2003;64 Suppl:21–27.12662130
  • Goddard AW, Mason GF, Almai A, et al. Reductions in occipital cortex GABA levels in panic disorder detected with 1H-magnetic resonance spectroscopy. Arch Gen Psychiatry. 2001;58:556–561. doi:10.1001/archpsyc.58.6.55611386984
  • He Y, Ouyang J, Hu Z, et al. Intervention mechanism of repeated oral GABA administration on anxiety-like behaviors induced by emotional stress in rats. Psychiatry Res. 2019;271:649–657. doi:10.1016/j.psychres.2018.12.02530791338
  • Alisch RS, Van Hulle C, Chopra P, et al. A multi-dimensional characterization of anxiety in monozygotic twin pairs reveals susceptibility loci in humans. Transl Psychiatry. 2017;7:1282. doi:10.1038/s41398-017-0047-929225348
  • Domschke K, Tidow N, Schrempf M, et al. Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1(GAD1) DNA hypomethylation?. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:189–196. doi:10.1016/j.pnpbp.2013.07.01423906988
  • Roberts S, Lester KJ, Hudson JL, et al. Serotonin transporter methylation and response to cognitive behaviour therapy in children with anxiety disorders. Transl Psychiatry. 2014;4:e444. doi:10.1038/tp.2014.8325226553
  • Ziegler C, Richter J, Mahr M, et al. MAOA gene hypomethylation in panic disorder- reversibility of an epigenetic risk pattern by psychotherapy. Transl Psychiatry. 2016;6:e773. doi:10.1038/tp.2016.4127045843
  • Shimada-Sugimoto M, Otowa T, Miyagawa T, et al. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9:6. doi:10.1186/s13148-016-0307-128149334
  • Melas PA, Forsell Y. Hypomethylation of MAOA’s first exon region in depression: a replication study. Psychiatry Res. 2015;226:389–391. doi:10.1016/j.psychres.2015.01.00325623016
  • Ziegler C, Dannlowski U, Braüer D, et al. Oxytocin receptor gene methylation: converging multilevel evidence for a role in social anxiety. Neuropsychopharmacology. 2015;40:1528–1538. doi:10.1038/npp.2015.225563749
  • Sanwald S, Gahr M, Widenhorn-Müller K, et al. Relation of promoter methylation of the oxytocin gene to stressful life events and depression severity. J Mol Neurosci.2020; 70:201–211. doi:10.1007/s12031-019-01446-1
  • Murphy TM, O’Donovan A, Mullins N, O’Farrelly C, McCann A, Malone K. Anxiety is associated with higher levels of global DNA methylation and altered expression of epigenetic and interleukin-6 genes. Psychiatr Genet. 2015;25:71–78. doi:10.1097/YPG.000000000000005525350786
  • Tyrka AR, Parade SH, Welch ES, et al. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders. Transl Psychiatry. 2016;6:e848. doi:10.1038/tp.2016.11227378548
  • Prelog M, Hilligardt D, Schmidt CA, et al. Hypermethylation of FOXP3 promoter and premature aging of the immune system in female patients with panic disorder?. PLoS One. 2016;11:e0157930. doi:10.1371/journal.pone.015793027362416
  • Iurato S, Carrillo-Roa T, Arloth J, et al. DNA methylation signatures in panic disorder. Transl Psychiatry. 2017;7:1287. doi:10.1038/s41398-017-0026-129249830
  • Bortoluzzi A, Salum GA, da Rosa ED, Chagas VD, Castro MAA, Manfro GG. DNA methylation in adolescents with anxiety disorder: a longitudinal study. Sci Rep. 2018;8:13800.30218003
  • Ciuculete DM, Boström AE, Tuunainen A-K, et al. Changes in methylation within the STK32B promoter are associated with an increased risk for generalized anxiety disorder in adolescents. J Psychiatr Res. 2018;102:44–51. doi:10.1016/j.jpsychires.2018.03.00829604450
  • Kang H-J, Kim K-O, Kim J-W, et al. A longitudinal study of the associations of BDNF genotype and methylation with poststroke anxiety. Int J Geriatr Psychiatry. 2019;34:1706–1715. doi:10.1002/gps.v34.1131368178
  • Palma-Gudiel H, Cordova-Palomera A, Tornador C, et al. Increased methylation at an unexplored glucocorticoid responsive element within exon 1D of NR3C1 gene is related to anxious-depressive disorders and decreased hippocampal connectivity. Eur Neuropsychopharmacol. 2018;28:579–588. doi:10.1016/j.euroneuro.2018.03.01529650294
  • Bosmans G, Young JF, Hankin BL. NR3C1 methylation as a moderator of the effects of maternal support and stress on insecure attachment development. Dev Psychol. 2018;54:29–38. doi:10.1037/dev000042229058930
  • Roberts S, Keers R, Breen G, et al. DNA methylation of FKPB5 and response to exposure-based psychological therapy. Am J Med Genet B. 2019;180:150–158. doi:10.1002/ajmg.b.32650
  • Chagnon YC, Potvin O, Hudon C, Préville M. DNA methylation and single nucleotide variants in the brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) genes are associated with anxiety/depression in older women. Front Genet. 2015;30(6):230.
  • Hommers LG, Richter J, Yang Y, et al. A functional genetic variation of SLC6A2 repressor has-miR-579-3p upregulates sympathetic noradrenergic processes of fear and anxiety. Transl Psychiatry. 2018;8:226. doi:10.1038/s41398-018-0278-430341278
  • Chen SD, Sun XY, Niu W, et al. Correlation between the level of microRNA expression in peripheral blood mononuclear cells and symptomatology in patients with generalized anxiety disorder. Compr Psychiatry. 2016;69:216–224. doi:10.1016/j.comppsych.2016.05.00627423364
  • Dickson DA, Paulus JK, Mensah V, et al. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Transl Psychiatry. 2018;8:101. doi:10.1038/s41398-018-0146-229795112
  • Jacobsen DP, Eriksen MB, Rajalingam D, et al. Exposure to workplace bullying, microRNAs and pain; Evidence of a moderating effect of miR-30c rs928508 and miR-223 rs3848900. Stress. 2020;23:77–86. doi:10.1080/10253890.2019.164232031339402
  • Hettema JM, Otowa T. Genetics of anxiety disorders In: Sadock BJ, Sadock VA, Ruiz P, editors. Kaplan & Sadock’s Comprehensive Textbook of Psychiatry. Philadelphia, PA: Wolters Kluwer; 2017:1737–1741.
  • Bartlett AA, Lapp HE, Hunter RG. Epigenetic mechanisms of the glucocorticoid receptor. Trends Endocrinol Metab. 2019;30:807–818. doi:10.1016/j.tem.2019.07.00331699238
  • Champagne FA. Beyond the maternal epigenetic legacy. Nat Neurosci. 2018;21:773–774. doi:10.1038/s41593-018-0157-629786084
  • Lee JB, Wei J, Liu W, Cheng J, Feng J, Yan Z. Histone deacetylase 6 gates the synaptic action of acute stress in prefrontal cortex. J Physiol. 2012;590:1535–1546. doi:10.1113/jphysiol.2011.22490722331421
  • Espallergues J, Teegarden SL, Veerakumar A, et al. HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J Neurosci. 2012;32:4400–4416. doi:10.1523/JNEUROSCI.5634-11.201222457490
  • Roberts S, Keers R, Lester KJ, et al. HPA axis related genes and response to psychological therapies: genetics and epigenetics. Depress Anxiety. 2015;32:861–870. doi:10.1002/da.2243026647360
  • Hempstead BL. Brain-derived neurotrophic factor: three ligands, many actions. Trans Am Clin Climatol Assoc. 2015;126:9–19.26330656
  • Suliman S, Hemmings SM, Seedat S. Brain-derived neurotrophic factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis. Front Integr Neurosci. 2013;7:55. doi:10.3389/fnint.2013.0005523908608
  • Varela MA, Roberts TC, Wood MJA. Epigenetics and ncRNAs in brain function and disease: mechanisms and prospects for therapy. Neurotherapeutics. 2013;10:621–631. doi:10.1007/s13311-013-0212-724068583
  • Murphy CP, Singewald N. Role of microRNAs in anxiety and anxiety-related disorders. Curr Top Behav Neurosci. 2019;42:185–220.31485988
  • Hadjiargyrao M, Delihas N. The intertwining of transposable elements and non-coding RNAs. Int J Mol Sci. 2013;14:13307–13328. doi:10.3390/ijms14071330723803660
  • Guffanti G, Bartlett A, DeCrescenzo P, Macciardi F, Hunter R. Transposable elements. Curr Top Behav Neurosci. 2019;42:221–246.31605305
  • Hunter RG, McEwen BS. Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics. 2013;5:177–194. doi:10.2217/epi.13.823566095
  • Whittle N, Schmuckermair C, Gunduz Cinar O, et al. Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model. Neuropharmacology. 2013;64:414–423. doi:10.1016/j.neuropharm.2012.06.00122722028
  • Sakharkar AJ, Zhang H, Tang L, et al. Effects of histone deacetylase inhibitors on amygdaloid histone acetylation and neuropeptide Y expression: a role in anxiety-like and alcohol-drinking behaviours. Int J Neuropsychopharmacol. 2014;17:1207–1220. doi:10.1017/S146114571400005424528596
  • You C, Zhang H, Sakharkar AJ, Teppen T, Pandey SC. Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment. Int J Neuropsychopharmacol. 2014;17:313–322. doi:10.1017/S146114571300114424103311
  • Tran L, Schulkin J, Ligon CO, Greenwood-van Meerveld B. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry. 2015;20:1219–1231. doi:10.1038/mp.2014.122
  • Moloney RD, Stilling RM, Dinan TG, Cryan JF. Early-life stress-induced visceral hypersensitivity and anxiety behavior is reversed by histone deacetylase inhibition. Neurogastroenterol Motil. 2015;27:1831–1836. doi:10.1111/nmo.1267526403543
  • Sah A, Sotnikov S, Kharitonova M, et al. Epigenetic mechanisms within the cingulate cortex regulate innate anxiety-like behavior. Int J Neuropsychopharmacol. 2019;22:317–328. doi:10.1093/ijnp/pyz00430668714
  • Montagud-Romero S, Cantacorps L, Valverde O. Histone deacetylases inhibitor trichostatin A reverses anxiety-like symptoms and memory impairments induced by maternal binge alcohol drinking in mice. J Psychopharmacol. 2019;33:1573–1587. doi:10.1177/026988111985720831294671
  • Hayase T. Putative epigenetic involvement of the endocannabinoid system in anxiety-and depression-related behaviors caused by nicotine as a stressor. PLoS One. 2016;11:e0158950. doi:10.1371/journal.pone.015895027404492
  • Kv A, Madhana RM, Js IC, Lahkar M, Sinha S, Naidu VGM. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav Brain Res. 2018;344:73–84. doi:10.1016/j.bbr.2018.02.00929452193
  • Karnib N, El-Ghandour R, El Hayek L, et al. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases. Neuropsychopharmacology. 2019;44:1152–1162. doi:10.1038/s41386-019-0313-z30647450
  • Park J, Terranova-Barberio M, Zhong AY, Thomas S, Munster PN. Clinical applications of histone deacetylase inhibitors In: Tollefsbol TO, editor. Handbook of Epigenetics: The New Molecular and Medical Genetics. Cambridge, MA: Elsevier; 2017:605–621.
  • Primeau F, Fontaine R, Beauclair L. Valproic acid and panic disorder. Can J Psychiatry. 1990;35:248–250. doi:10.1177/0706743790035003092111204
  • Keck PE, Taylor VE, Tugrul KC, McElroy SL, Bennett JA. Valproate treatment of panic disorder and lactate-induced panic attacks. Biol Psychiatry. 1993;33:542–546. doi:10.1016/0006-3223(93)90010-B8513040
  • Woodman CL, Noyes R. Panic disorder: treatment with valproate. J Clin Psychiatry. 1994;55:134–136.8071256
  • Kinrys G, Pollack MH, Simon NM, Worthington JJ, Nardi AE, Versiani M. Valproic acid for the treatment of social anxiety disorder. Int Clin Psychopharmacol. 2003;18:169–172. doi:10.1097/01.yic.0000064261.66765.9f12702897
  • Aliyev NA, Aliyev ZN. Valproate (depakine-chrono) in the acute treatment of outpatients with generalized anxiety disorder without psychiatric comorbidity: randomized, double-blind placebo-controlled study. Eur Psychiatry. 2008;23:109–114. doi:10.1016/j.eurpsy.2007.08.00117945470
  • Bach DR, Korn CW, Vunder J, Bantel A. Effect of valproate and pregabalin on human anxiety-like behaviour in a randomized controlled trial. Transl Psychiatry. 2018;8:157. doi:10.1038/s41398-018-0206-730115911
  • Scott KA, Hoban AE, Clarke G, Moloney GM, Dinan TG, Cryan JF. Thinking small: towards microRNA-based therapeutics for anxiety disorders. Expert Opin Investig Drugs. 2015;24:529–542. doi:10.1517/13543784.2014.997873
  • Roy-Byrne P. Treatment-refractory anxiety; Definition, risk factors, and treatment challenges. Dialogues Clin Neurosci. 2015;17:191–206.26246793
  • Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes In: Allis CD, Caparros M-L, Jenuwein T, Reinberg D, Lachner M, editors. Epigenetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2015:143–168.
  • Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–840. doi:10.1126/science.117537119608861
  • Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. J Cell Biochem. 2005;96:293–304. doi:10.1002/(ISSN)1097-464416088937
  • Li W, Sun Z. Mechanism of action for HDAC inhibitors – insights from omics approaches. Int J Mol Sci. 2019;20(7):1616. doi:10.3390/ijms20071616
  • Guidotti A, Grayson DR. DNA methylation and demethylation as targets for antipsychotic therapy. Dialogues Clin Neurosci. 2014;16:419–429.25364290
  • Wei Y, Melas PA, Wegener G, Mathé AA, Lavebratt C. Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the BDNF gene. Int J Neuropsychopharmacol. 2014;18(2).
  • Peedicayil J, Kumar A. Epigenetic drugs for mood disorders. Prog Mol Biol Transl Sci. 2018;157:151–174.29933949
  • Whittle N, Singewald N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?. Biochem Soc Trans. 2014;42:569–581. doi:10.1042/BST2013023324646280