930
Views
20
CrossRef citations to date
0
Altmetric
Review

Ketamine in Bipolar Disorder: A Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2707-2717 | Published online: 12 Nov 2020

References

  • Abreu LN, Lafer B, Baca-Garcia E, Oquendo MA. Suicidal ideation and suicide attempts in bipolar disorder type I: an update for the clinician. Rev Bras Psiquiatr. 2009;31:271–280. doi:10.1590/s1516-4446200900500000319787156
  • Jamison KR. Suicide and bipolar disorder. J Clin Psychiatry. 2000;61:47–51.
  • Kupka RW, Altshuler LL, Nolen WA, et al. Three times more days depressed than manic or hypomanic in both bipolar I and bipolar II disorder. Bipolar Disord. 2007;9:531–535. doi:10.1111/j.1399-5618.2007.00467.x17680925
  • Hidalgo-Mazzei D, Berk M, Cipriani A, et al. Treatment-resistant and multi-therapy-resistant criteria for bipolar depression: consensus definition. Br J Psychiatry. 2019;214:27–35. doi:10.1192/bjp.2019.3630520709
  • Li CT, Bai YM, Huang YL, et al. Association between antidepressant resistance in unipolar depression and subsequent bipolar disorder: cohort study. Br J Psychiatry. 2012;200:45–51. doi:10.1192/bjp.bp.110.08698322016435
  • Tondo L, Vázquez GH, Baldessarini RJ. Options for pharmacological treatment of refractory bipolar depression. Curr Psychiatry Rep. 2014;16:431. doi:10.1007/s11920-013-0431-y24425269
  • Peyrovian B, McIntyre RS, Phan L, et al. Registered clinical trials investigating ketamine for psychiatric disorders. J Psychiatr Res. 2020;127:1–12. doi:10.1016/j.jpsychires.2020.03.02032315806
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–354. doi:10.1016/S0006-3223(99)00230-910686270
  • Zarate CA Jr, Singh J, Manji HK. Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry. 2006;59:1006–1020.16487491
  • Diazgranados N, Ibrahim L, Brutsche NE, et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment resistant bipolar depression. Arch Gen Psychiatry. 2010;67:793–802. doi:10.1001/archgenpsychiatry.2010.9020679587
  • Zarate CA Jr, Brutsche NE, Ibrahim L, et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry. 2012;71:939–946. doi:10.1016/j.biopsych.2011.12.01022297150
  • Grunebaum MF, Ellis SP, Keip JG, et al. Ketamine versus midazolam in bipolar depression with suicidal thoughts: a pilot midazolam-controlled randomized clinical trial. Bipolar Disord. 2017;19(3):176–183. doi:10.1038/s41386-019-0317-828452409
  • Ionescu DF, Luckenbaugh DA, Niciu MJ, Richards EM, Zarate CA Jr. A single infusion of ketamine improves depression scores in patients with anxious bipolar depression. Bipolar Disord. 2015;17:438–443. doi:10.1111/bdi.1227725400146
  • Permoda-Osip A, Skibinska M, Bartkowska-Sniatkowska A, Kliwicki S, Chlopocka-Wozniak M, Rybakowski JK. Factors connected with efficacy of single ketamine infusion in bipolar depression. Psychiatr Pol. 2014;48:35–47. doi:10.12740/PP/2117524946433
  • Rybakowski JK, Permoda-Osip A, Bartkowska-Sniatkowska A. Ketamine augmentation rapidly improves depression scores in inpatients with treatment-resistant bipolar depression. Int J Psychiatry Clin Pract. 2017;21:99–103. doi:10.1080/13651501.2017.129783428271731
  • Correia-Melo FS, Argolo FC, Araujo-de-Freitas L, et al. Rapid infusion of esketamine for unipolar and bipolar depression: a retrospective chart review. Neuropsychiatr Dis Treat. 2017;13:1627–1632. doi:10.2147/NDT.S13562328790825
  • Kishimoto T, Chawia JM, Hagi K, et al. Single-dose infusion ketamine and non-ketamine N-methyl-D-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med. 2016;46:1459–1472. doi:10.1017/S003329171600006426867988
  • Wilkinson ST, Ballard ED, Bloch MH, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry. 2018;175:150–158. doi:10.1176/appi.ajp.2017.1704047228969441
  • Niciu MJ, Luckenbaugh DA, Ionescu DF, et al. Clinical predictors of ketamine response in treatment-resistant major depression. J Clin Psychiatry. 2014;75:e417–e423. doi:10.4088/JCP.13m0869824922494
  • Machado-Vieira R, Gold PW, Luckenbaugh DA, et al. The role of adipokines in the rapid antidepressant effects of ketamine. Mol Psychiatry. 2017;22:127–133. doi:10.1038/mp.2016.3627046644
  • Lara DR, Bisol LW, Munari LR. Antidepressant, mood stabilizing and procognitive effects of very low dose sublingual ketamine in refractory unipolar and bipolar depression. Int J Neuropsychopharmacol. 2013;16:2111–2117. doi:10.1017/S146114571300048523683309
  • Zheng W, Zhou YL, Liu WJ, et al. Rapid and longer-term antidepressant effects of repeated-dose intravenous ketamine for patients with unipolar and bipolar depression. Psychiatry Res. 2018;106:61–68. doi:10.1016/j.jpsychires.2018.09.013
  • Zheng W, Zhou YL, Liu WJ, et al. A preliminary study of adjunctive ketamine for treatment-resistant bipolar depression. J Affect Disord. 2020;275:38–43. doi:10.1016/j.jad.2020.06.02032658821
  • McIntyre RS, Rodrigues NB, Lee Y, et al. The effectiveness of repeated intravenous ketamine on depressive symptoms, suicidal ideation and functional disability in adults with major depressive disorder and bipolar disorder: results from the Canadian rapid treatment center of excellence. J Affect Disord. 2020;274:903–910. doi:10.1016/j.jad.2020.05.08832664031
  • McAllister-Williams RH, Arango C, Blier P, et al. The identification, assessment and management of difficult-to-treat depression: an international consensus statement. J Affect Disord. 2020;15(267):264–282. doi:10.1016/j.jad.2020.02.023
  • McIntyre RS, Lipsitz O, Rodrigues NB, et al. The effectiveness of ketamine on anxiety, irritability, and agitation: implications for treating mixed features in adults with major depressive or bipolar disorder. Bipolar Disord. 2020. doi:10.1111/bdi.12941
  • Shim IH, Lee J, Kim MD, et al. The prevalence and diagnostic classification of mixed features in patients with major depressive episodes: a multicenter study based on the DSM-5. Int J Methods Psychiatr Res. 2019;28(3):e1773. doi:10.1002/mpr.177330786322
  • Schaffer A, Isometsä ET, Tondo L, et al. International society for bipolar disorders task force on suicide: metaanalyses and meta-regression of correlates of suicide attempts and suicide deaths in bipolar disorder. Bipolar Disord. 2015;17:1–16. doi:10.1111/bdi.12271
  • Carter TD, Mundo E, Parikh SV, Kennedy JL. Early age at onset as a risk factor for poor outcome of bipolar disorder. J Psychiatr Res. 2003;37:297–303. doi:10.1016/S0022-3956(03)00052-912765852
  • Baldessarini RJ, Pompili M, Tondo L. Suicide in bipolar disorder: risks and management. CNS Spectr. 2006;11(6):465–471. doi:10.1017/S109285290001468116816785
  • Baldessarini RJ, Tondo L, Vázquez GH. Pharmacological treatment of adult bipolar disorder. Mol Psychiatry. 2019;24(2):198–217. doi:10.1038/s41380-018-0044-229679069
  • Price RB, Nock MK, Charney DS, et al. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry. 2009;66:522–526. doi:10.1016/j.biopsych.2009.04.02919545857
  • DiazGranados N, Ibrahim LA, Brutsche NE, et al. Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry. 2010;71:1605–1611. doi:10.4088/JCP.09m05327blu20673547
  • Ballard ED, Ionescu DF, Vande Voort JL, et al. Improvement in suicidal ideation after ketamine infusion: relationship to reductions in depression and anxiety. J Psychiatr Res. 2014;58:161–166. doi:10.1016/j.jpsychires.2014.07.02725169854
  • Bartoli F, Riboldi I, Crocamo C, Di Brita C, Clerici M, Carrà G. Ketamine as a rapid-acting agent for suicidal ideation: a meta-analysis. Neurosci Biobehav Rev. 2017;77:232–236. doi:10.1016/j.neubiorev.2017.03.01028342764
  • Zhan Y, Zhang B, Zhou Y, et al. A preliminary study of anti-suicidal efficacy of repeated ketamine infusions in depression with suicidal ideation. J Affect Disord. 2019;15(251):205–212. doi:10.1016/j.jad.2019.03.071
  • Sublette ME, Galfalvy HC, Fuchs D, et al. Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain Behav Immun. 2011;25:1272–1278. doi:10.1016/j.bbi.2011.05.00221605657
  • Bay-Richter C, Linderholm KR, Lim CK, et al. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun. 2015;43:110–117. doi:10.1016/j.bbi.2014.07.01225124710
  • Steiner J, Bielau H, Brisch R, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–157. doi:10.1016/j.jpsychires.2006.10.01317174336
  • Verdonk F, Petit AC, Abdel-Ahad P, et al. Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain Behav Immun. 2019;81:361–373. doi:10.1016/j.bbi.2019.06.03331255681
  • Allen ND, Rodysill BR, Bostwick JM. A report of affective switching associated with ketamine: the case of ketamine-induced mania is not closed. Bipolar Disord. 2019;21(2):176–178. doi:10.1111/bdi.1272830452105
  • Salvadore G, Quiroz JA, Machado-Vieira R, Henter ID, Manji HK, Zarate CA Jr. The neurobiology of the switch process in bipolar disorder: a review. J Clin Psychiatry. 2010;71(11):1488–1501. doi:10.4088/JCP.09r05259gre20492846
  • Niciu MJ, Luckenbaugh DA, Ionescu DF, Mathews DC, Richards EM, Zarate CA Jr. Subanesthetic dose ketamine does not induce an affective switch in three independent samples of treatment-resistant major depression. Biol Psychiatry. 2013;74(10):e23–e24. doi:10.1016/j.biopsych.2013.01.03823726512
  • Yang C, Yang J, Luo A, Hashimoto K. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Transl Psychiatry. 2019;9(1):280. doi:10.1038/s41398-019-0624-131699965
  • Maeng S, Zarate CA, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–352. doi:10.1016/j.biopsych.2007.05.02817643398
  • Réus GZ, Stringari RB, Ribeiro KF, et al. Ketamine plus imipramine treatment induces antidepressant- like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav Brain Res. 2011;221(1):166–171. doi:10.1016/j.bbr.2011.02.02421397634
  • Wei Z, Zhang K, Zhou Q, et al. Differential mechanisms underlying antidepressant responses of ketamine and imipramine. CNS Neurol Disord Drug Targets. 2017;16(7):846–853. doi:10.2174/187152731666617042812324828462695
  • Zanos P, Moaddel R, Morris PJ, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481–486. doi:10.1038/nature1799827144355
  • Freund N, Juckel G. Bipolar disorder: its etiology and how to model in rodents. Methods Mol Biol. 2019;2011:61–77. doi:10.1007/978-1-4939-9554-7_431273693
  • Maletic V, Raison C. Integrated neurobiology of bipolar disorder. Front Psychiatry. 2014;5:98. doi:10.3389/fpsyt.2014.0009825202283
  • Grande I, Fries GR, Kunz M, Kapczinski F. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig. 2010;7:243–250. doi:10.4306/pi.2010.7.4.243
  • Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci. 2008;28:4088–4095. doi:10.1523/JNEUROSCI.5510-07.200818400908
  • Shaltiel G, Chen G, Manji HK. Neurotrophic signalling cascades in the patho-physiology and treatment of bipolar disorder. CurrOpinPharmacol. 2007;7:22–26. doi:10.1016/j.coph.2006.07.005
  • Cunha AB, Frey BN, Andreazza AC, et al. Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. NeurosciLett. 2006;398:215–219. doi:10.1016/j.neulet.2005.12.085
  • Machado-Vieira R, Dietrich MO, Leke R, et al. Decreased plasma brain derived neurotrophic factor levels in unmedicated bipolar patients during manic episode. BiolPsychiatry. 2007;61:142–144. doi:10.1016/j.biopsych.2006.03.070
  • Yang C, Shirayama Y, Zhang J-C, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632. doi:10.1038/tp.2015.13626327690
  • Dong C, Zhang JC, Yao W, et al. Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: comparison with ketamine. Int J Neuropsychopharmacol. 2017;20:228–236.27765808
  • Moda-Sava RN, Murdock MH, Parekh PK, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:pii: eaat8078.
  • Ma Z, Zang T, Birnbaum SG, et al. TrkB dependent adult hippocampal progenitor differentiation mediates sustained ketamine antidepressant response. Nat Commun. 2017;8(1):1668. doi:10.1038/s41467-017-01709-829162814
  • Soumier A, Carter RM, Schoenfeld TJ, Cameron HA. New hippocampal neurons mature rapidly in response to ketamine but are not required for its acute antidepressant effects on neophagia in rats. eNeuro. 2016;3(2). doi:10.1523/ENEURO.0116-15.2016
  • Yamada J, Jinno S. Potential link between antidepressant-like effects of ketamine and promotion of adult neurogenesis in the ventral hippocampus of mice. Neuropharmacology. 2019;158:107710. doi:10.1016/j.neuropharm.2019.10771031310776
  • Choi M, Lee SH, Chang HL, Son H. Hippocampal VEGF is necessary for antidepressant-like behaviors but not sufficient for antidepressant-like effects of ketamine in rats. Biochim Biophys Acta. 2016;1862(7):1247–1254. doi:10.1016/j.bbadis.2016.04.00127063455
  • Michaelsson H, Andersson M, Svensson J, et al. The novel antidepressant ketamine enhances dentate gyrus proliferation with no effects on synaptic plasticity or hippocampal function in depressive-like rats. Acta Physiol. 2019;225(4):e13211. doi:10.1111/apha.13211
  • Ludwig B, Dwivedi Y. Dissecting bipolar disorder complexity through epigenomic approach. Mol Psychiatry. 2016;21:1490–1498.27480490
  • Machado-Vieira R, Ibrahim L, Zarate CA Jr. Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci Ther. 2011;17:699–704. doi:10.1111/j.1755-5949.2010.00203.x20961400
  • Hobara T, Uchida S, Otsuki K, et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res. 2010;44:263–270. doi:10.1016/j.jpsychires.2009.08.01519767015
  • Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord. 2012;14:684–696. doi:10.1111/bdi.1200523043691
  • Soeiro-de-Souza MG, Andreazza AC, Carvalho AF, Machado-Vieira R, Young LT, Moreno RA. Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder. Int J Neuropsychopharmacol. 2013;16:1505–1512. doi:10.1017/S146114571300004723449001
  • Abdolmaleky HM, Cheng KH, Faraone SV, et al. Hypomethylation of MB-COMT promoter is a major risk factor for Schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15:3132–3145. doi:10.1093/hmg/ddl25316984965
  • Réus GZ, Abelaira HM, Dos Santos MA, et al. Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors. Behav Brain Res. 2013;256:451–456. doi:10.1016/j.bbr.2013.08.04124004850
  • Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry. 2013;74(1):15–25. doi:10.1016/j.biopsych.2013.01.00723419545
  • Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83. doi:10.1093/schbul/sbx03528338954
  • Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry. 2010;15(4):384–392. doi:10.1038/mp.2009.4719488045
  • Perugi G, Quaranta G, Belletti S, et al. General medical conditions in 347 bipolar disorder patients: clinical correlates of metabolic and autoimmune-allergic diseases. J Affect Disord. 2015;170:95–103. doi:10.1016/j.jad.2014.08.05225237732
  • Kiraly DD, Horn SR, Van Dam NT, et al. Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry. 2017;7:e1065. doi:10.1038/tp.2017.3128323284
  • Chen MH, Li CT, Lin WC, et al. Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: a randomized, double-blind control study. Psychiatry Res. 2018;269:207–211. doi:10.1016/j.psychres.2018.08.07830153598
  • Kadriu B, Farmer CA, Yuan P, et al. The kynurenine pathway and bipolar disorder: intersection of the monoaminergic and glutamatergic systems and immune response. Mol Psychiatry. 2019. doi:10.1038/s41380-019-0589-8
  • Lee JE, Lee JM, Park YJ, et al. Inhibition of autoimmune Th17 cell responses by pain killer ketamine. Oncotarget. 2017;8(52):89475–89485. doi:10.18632/oncotarget.1832429163764
  • Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodelling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–796.27067014
  • Macedo D, Filho AJ, de Sousa CNS, Quevedo J, Barichello T Jr, Freitas de Lucena D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord. 2017;208:22–32.27744123
  • Getachew B, Aubee JI, Schottenfeld RS, Csoka AB, Thompson KM, Tizabi Y. Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC Microbiol. 2018;18:222.30579332
  • Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6:306–314. doi:10.1038/nrgastro.2009.3519404271
  • El Aidy S, Dinan TG, Cryan JF. Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther. 2015;37:954–967. doi:10.1016/j.clinthera.2015.03.00225846319
  • Bercik P, Collins SM, Verdu EF. Microbes and the gut–brain axis. Neurogastroenterol Motil. 2012;24(5):405–413.22404222
  • Maqsood R, Stone TW. the gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res. 2016;41(11):2819–2835.27553784
  • Lu Q, Lai J, Lu H, et al. Gut microbiota in bipolar depression and its relationship to brain function: an advanced exploration. Front Psychiatry. 2019;29;10:784. doi:10.3389/fpsyt.2019.00784
  • Aizawa E, Tsuji H, Asahara T, et al. Bifidobacterium and lactobacillus counts in the gut microbiota of patients with bipolar disorder and healthy controls. Front Psychiatry. 2018;9:730. doi:10.3389/fpsyt.2018.0073030713509
  • Qu Y, Yang C, Ren Q, Ma M, Dong C, Hashimoto K. Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnormal composition of gut microbiota in a social defeat stress model. Sci Rep. 2017;7:15725.29147024
  • Yang C, Qu Y, Fujita Y, et al. Possible role of gut-microbiota in the antidepressant effects of (R)-ketamine in a social defeat stress model. Transl Psychiatry. 2017;7:1294.29249803
  • Huang N, Hua D, Zhan G, et al. Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression. Pharmacol Biochem Behav. 2018;176:93–100.30528936
  • Cui H, Meng Y, Bulleit RF. Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. Brain Res Dev Brain Res. 1998;111(2):177–188.9838099
  • Gould TD, Chen G, Manji HK. In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacology. 2004;29(1):32–38.12942141
  • Polter A, Beurel E, Yang S, et al. Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances. Neuropsychopharmacology. 2010;35(8):1761–1774.20357757
  • Costemale-Lacoste JF, Guilloux JP, Gaillard R. The role of GSK-3 in treatment-resistant depression and links with the pharmacological effects of lithium and ketamine: a review of the literature. Encephale. 2016;42(2):156–164.26995153
  • Jope RS. Anti-bipolar therapy: mechanism of action of lithium. Mol Psychiatry. 1999;4(2):117–128.10208444
  • Chiu CT, Scheuing L, Liu G, et al. The mood stabilizer lithium potentiates the antidepressant-like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress. Int J Neuropsychopharmacol. 2014;18:pyu102.25548109
  • Leu SJ, Yang YY, Liu HC, et al. Valproic acid and lithium meditate anti-inflammatory effects by differentially modulating dendritic cell differentiation and function. J Cell Physiol. 2017;232(5):1176–1186.27639185
  • Knijff EM, Breunis MN, Kupka RW, et al. An imbalance in the production of IL-1beta and IL-6 by monocytes of bipolar patients: restoration by lithium treatment. Bipolar Disord. 2007;9(7):743–753. doi:10.1111/j.1399-5618.2007.00444.x17988365
  • Vieta E, Salagre E, Grande I, et al. Early intervention in bipolar disorder. Am J Psychiatry. 2018;175(5):411–426. doi:10.1176/appi.ajp.2017.1709097229361850
  • de la Fuente-tomás L, Sierra P, Sanchez-Autet M, et al. A clinical staging model for bipolar disorder: longitudinal approach. Transl Psychiatry. 2020;10:45. doi:10.1038/s41398-020-0718-932066710
  • Berk M, Conus P, Lucas N, et al. Setting the stage: from prodrome to treatment resistance in bipolar disorder. Bipolar Disord. 2007;9(7):671–678. doi:10.1111/j.1399-5618.2007.0048417988356
  • Kapczinski F, Dias VV, Kauer-Sant’Anna M, et al. Clinical implications of a staging model for bipolar disorders. Expert Rev Neurother. 2009;9:957–966. doi:10.1586/ern.09.3119589046
  • Kapczinski F, Dias VV, Kauer-Sant’Anna M, et al. The potential use of biomarkers as an adjunctive tool for staging bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:1366–1371. doi:10.1016/j.pnpbp.2009.07.02719666076
  • Cosci F, Fava GA. Staging of mental disorders: systematic review. Psychother Psychosom. 2013;82(1):20–34. doi:10.1159/00034224323147126
  • Duffy A. Toward a comprehensive clinical staging model for bipolar disorder: integrating the evidence. Can J Psychiatry. 2014;59(12):659–666. doi:10.1177/07067437140590120825702367
  • Passos IC, Mwangi B, Vieta E, Berk M, Kapczinski F. Areas of controversy in neuroprogression in bipolar disorder. Acta Psychiatr Scand. 2016;134:91–103. doi:10.1111/acps.1258127097559
  • Suh JS, Schneider MA, Minuzzi L, et al. Cortical thickness in major depressive disorder: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2019;88:287–302. doi:10.1016/j.pnpbp.2018.08.00830118825
  • Syan SK, Smith M, Frey BN, et al. Resting-state functional connectivity in individuals with bipolar disorder during clinical remission: a systematic review. J Psychiatry Neurosci. 2018;43:298–316. doi:10.1503/jpn.17017530125243
  • Fries GR, Bauer IE, Scaini G, et al. Accelerated epigenetic aging and mitochondrial DNA copy number in bipolar disorder. Transl Psychiatry. 2017;7:1283. doi:10.1038/s41398-017-0048-829225347
  • Maurya PK, Noto C, Rizzo LB, et al. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:134–144. doi:10.1016/j.pnpbp.2015.08.01626348786
  • Gama CS, Kunz M, Magalhães PV, Kapczinski F. Staging and neuroprogression in bipolar disorder: a systematic review of the literature. Braz J Psychiatry. 2013;35:70–74. doi:10.1016/j.rbp.2012.09.00123567604
  • Fries GR, Pfaffenseller B, Stertz L, et al. Staging and neuroprogression in bipolar disorder. Curr Psychiatry Rep. 2012;14:667–675. doi:10.1007/s11920-012-0319-223090632
  • Berk M, Kapczinski F, Andreazza AC, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35:804–817. doi:10.1016/j.neubiorev.2010.10.00120934453
  • Kamintsky L, Cairns KA, Veksler R, et al. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. Neuroimage Clin. 2020;26:102049. doi:10.1016/j.nicl.2019.10204931718955
  • Calkin CV. Insulin resistance takes center stage: a new paradigm in the progression of bipolar disorder. Ann Med. 2019;51(5–6):281–293. doi:10.1080/07853890.2019.165951131453713
  • Grande I, Magalhaes PV, Kunz M, Vieta E, Kapczinski F. Mediators of allostasis and systemic toxicity in bipolar disorder. Physiol Behav. 2012;106:46–50. doi:10.1016/j.physbeh.2011.10.02922079584
  • Kapczinski F, Vieta E, Andreazza AC, et al. Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neurosci Biobehav Rev. 2008;32:675–692. doi:10.1016/j.neubiorev.2007.10.00518199480
  • Yatham LN, Kapczinski F, Andreazza AC, Trevor Young L, Lam RW, Kauer-Sant’anna M. Accelerated age-related decrease in brain-derived neurotrophic factor levels in bipolar disorder. Int J Neuropsychopharmacol. 2009;12:137–139. doi:10.1017/S146114570800944918845016
  • Permoda-Osip A, Kisielewski J, Bartkowska-Sniatkowska A, Rybakowski JK. Single ketamine infusion and neurocognitive performance in bipolar depression. Pharmacopsychiatry. 2015;48(2):78–79. doi:10.1055/s-0034-139439925347227
  • Zhou Y, Zheng W, Liu W, et al. Neurocognitive effects of six ketamine infusions and the association with antidepressant response in patients with unipolar and bipolar depression. J Psychopharmacol. 2018;32(10):1118–1126. doi:10.1177/026988111879861430260273
  • Hennen J, Baldessarini RJ. Reduced suicidal risk during treatment with clozapine: meta-analysis. Schizophre Res. 2005;73:139–145. doi:10.1016/j.schres.2004.05.015