185
Views
5
CrossRef citations to date
0
Altmetric
Review

The Role of PAX2 in Neurodevelopment and Disease

, , , &
Pages 3559-3567 | Published online: 07 Dec 2021

References

  • Mateus-Pinheiro A, Alves ND, Patrício P, et al. AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior. Mol Psychiatry. 2017;22(12):1725–1734. doi:10.1038/mp.2016.16927777416
  • Teixeira JR, Szeto RA, Carvalho VMA, Muotri AR, Papes F. Transcription factor 4 and its association with psychiatric disorders. Transl Psychiatry. 2021;11(1):19. doi:10.1038/s41398-020-01138-033414364
  • Estruch SB, Graham SA, Quevedo M, et al. Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Hum Mol Genet. 2018;27(7):1212–1227. doi:10.1093/hmg/ddy23029365100
  • Wegmann S, DeVos SL, Zeitler B, et al. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci Adv. 2021;7(12):eabe1611. doi:10.1126/sciadv.abe161133741591
  • Hwang JY, Zukin RS. REST, a master transcriptional regulator in neurodegenerative disease. Curr Opin Neurobiol. 2018;48:193–200. doi:10.1016/j.conb.2017.12.00829351877
  • Whitton L, Apostolova G, Rieder D, et al. Genes regulated by SATB2 during neurodevelopment contribute to schizophrenia and educational attainment. PLoS Genet. 2018;14(7):e1007515. doi:10.1371/journal.pgen.100751530040823
  • Rossanti R, Morisada N, Nozu K, et al. Clinical and genetic variability of PAX2-related disorder in the Japanese population. J Hum Genet. 2020;65(6):541–549. doi:10.1038/s10038-020-0741-y32203253
  • Cheong HI, Cho HY, Kim JH, Yu YS, Ha IS, Choi Y. A clinico-genetic study of renal coloboma syndrome in children. Pediatr Nephrol. 2007;22(9):1283–1289. doi:10.1007/s00467-007-0525-z17541647
  • O’Rahilly R, Müller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs. 2010;192(2):73–84. doi:10.1159/00028981720185898
  • Vinci L, Ravarino A, Fanos V, et al. Immunohistochemical markers of neural progenitor cells in the early embryonic human cerebral cortex. Eur J Histochem. 2016;60(1):2563. doi:10.4081/ejh.2016.256326972711
  • Wefers AK, Wefers AK, Haberlandt C, et al. Migration of Interneuron Precursors in the Nascent Cerebellar Cortex. The Cerebellum. 2018;17(1):62–71. doi:10.1007/s12311-017-0900-729149443
  • Scherholz M, Redl E, Wollesen T, de Oliveira AL, Todt C, Wanninger A. Ancestral and novel roles of Pax family genes in mollusks. BMC Evol Biol. 2017;17(1):81. doi:10.1186/s12862-017-0919-x28302062
  • Namm A. Expression of Pax2 protein during the formation of the central nervous system in human embryos. Folia Morphol. 2014;73(3):272–278. doi:10.5603/FM.2014.0043
  • Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol. 2011;95(3):334–351. doi:10.1016/j.pneurobio.2011.08.01221930183
  • Larsson M. Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neurosci Lett. 2017;638:96–101. doi:10.1016/j.neulet.2016.12.01527939388
  • O’Roak BJ, Stessman HA, Boyle EA, et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat Commun. 2014;5:5595. doi:10.1038/ncomms659525418537
  • Davis LK, Meyer KJ, Rudd DS, et al. Pax6 3ʹ deletion results in aniridia, autism and mental retardation. Hum Genet. 2008;123(4):371–378. doi:10.1007/s00439-008-0484-x18322702
  • Kikkawa T, Casingal CR, Chun SH, Shinohara H, Hiraoka K, Osumi N. The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Res. 2019;1705:95–103. doi:10.1016/j.brainres.2018.02.04129499177
  • Lord C, Brugha TS, Charman T, et al. Autism spectrum disorder. Nat Rev Dis Primers. 2020;6(1):5. doi:10.1038/s41572-019-0138-431949163
  • Bower MA, Schimmenti LA, Eccles MR, et al. PAX2-Related Disorder. In: Adam MP, Ardinger HH, Pagon RA, editors. GeneReviews(®). University of Washington, Seattle Copyright © 1993–2021; 2018: 154.
  • Galvez-Ruiz A, Lehner AJ, Galindo-Ferreiro A, Schatz P. Three New PAX2 Gene Mutations in Patients with Papillorenal Syndrome. Neuroophthalmology. 2017;41(5):271–278. doi:10.1080/01658107.2017.130799529339962
  • Schimmenti LA. Renal coloboma syndrome. Eur J Hum Genet. 2011;19(12):1207–1212. doi:10.1038/ejhg.2011.10221654726
  • Cunliffe HE, McNoe LA, Ward TA, Devriendt K, Brunner HG, Eccles MR. The prevalence of PAX2 mutations in patients with isolated colobomas or colobomas associated with urogenital anomalies. J Med Genet. 1998;35(10):806–812. doi:10.1136/jmg.35.10.8069783702
  • Miyazawa T, Nakano M, Takemura Y, et al. A case of renal-coloboma syndrome associated with mental developmental delay exhibiting a novel PAX2 gene mutation. Clin Nephrol. 2009;72(6):497–500. doi:10.5414/cnp7249719954729
  • Deng H, Zhang Y, Xiao H, et al. Diverse phenotypes in children with PAX2‐related disorder. Mol Genet Genomic Med. 2019;7(6):e701. doi:10.1002/mgg3.70131060108
  • Yokoi T, Enomoto Y, Tsurusaki Y, et al. An efficient genetic test flow for multiple congenital anomalies and intellectual disability. Pediatr Int. 2020;62(5):556–561. doi:10.1111/ped.1415931955471
  • Sanyanusin P, Schimmenti LA, McNoe LA, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet. 1995;9(4):358–364. doi:10.1038/ng0495-3587795640
  • Schimmenti LA, Cunliffe HE, McNoe LA, et al. Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am J Hum Genet. 1997;60(4):869–878.9106533
  • Schimmenti LA, Shim HH, Wirtschafter JD, et al. Homonucleotide expansion and contraction mutations ofPAX2 and inclusion of Chiari 1 malformation as part of Renal-Coloboma syndrome. Hum Mutat. 1999;14(5):369–376. doi:10.1002/(SICI)1098-1004(199911)14:5<369::AID-HUMU2>3.0.CO;2-E10533062
  • Benetti E, Artifoni L, Salviati L, et al. Renal hypoplasia without optic coloboma associated with PAX2 gene deletion. Nephrol Dial Transplant. 2007;22(7):2076–2078. doi:10.1093/ndt/gfm18717403695
  • Deutsch U, Dressler GR, Gruss P. Pax 1, a member of a paired box homologous murine gene family, is expressed in segmented structures during development. Cell. 1988;53(4):617–625. doi:10.1016/0092-8674(88)90577-62453291
  • Stapleton P, Weith A, Urbánek P, Kozmik Z, Busslinger M. Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nat Genet. 1993;3(4):292–298. doi:10.1038/ng0493-2927981748
  • Krauss S, Johansen T, Korzh V, Fjose A. Expression pattern of zebrafish pax genes suggests a role in early brain regionalization. Nature. 1991;353(6341):267–270. doi:10.1038/353267a01680220
  • Goulding MD, Lumsden A, Gruss P. Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord. Development. 1993;117(3):1001–1016. doi:10.1242/dev.117.3.10018100762
  • Walther C, Guenet JL, Simon D, et al. Pax: a murine multigene family of paired box-containing genes. Genomics. 1991;11(2):424–434. doi:10.1016/0888-7543(91)90151-41685142
  • Dahl E, Koseki H, Balling R. Pax genes and organogenesis. Bioessays. 1997;19(9):755–765. doi:10.1002/bies.9501909059297966
  • Lechner MS, Dressler GR. Mapping of Pax-2 transcription activation domains. J Biol Chem. 1996;271(35):21088–21093. doi:10.1074/jbc.271.35.210888702876
  • Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P. Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development. 1990;109(4):787–795. doi:10.1242/dev.109.4.7871977574
  • Ritz-Laser B, Estreicher A, Gauthier B, Philippe J. The paired homeodomain transcription factor Pax-2 is expressed in the endocrine pancreas and transactivates the glucagon gene promoter. J Biol Chem. 2000;275(42):32708–32715. doi:10.1074/jbc.M00570420010938089
  • Tavassoli K, Rüger W, Horst J. Alternative splicing in PAX2 generates a new reading frame and an extended conserved coding region at the carboxy terminus. Hum Genet. 1997;101(3):371–375. doi:10.1007/s0043900506449439670
  • Ward TA, Nebel A, Reeve AE, Eccles MR. Alternative messenger RNA forms and open reading frames within an additional conserved region of the human PAX-2 gene. Cell Growth Differ. 1994;5(9):1015–1021.7819127
  • Rowitch DH, McMahon AP. Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mech Dev. 1995;52(1):3–8. doi:10.1016/0925-4773(95)00380-j7577673
  • Frisen J, Johansson CB, Lothian C, Lendahl U. Central nervous system stem cells in the embryo and adult. Cell Mol Life Sci. 1998;54(9):935–945. doi:10.1007/s0001800502249791537
  • Schwarz M, Alvarez-Bolado G, Dressler G, Urbanek P, Busslinger M, Gruss P. Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mech Dev. 1999;82(1–2):29–39. doi:10.1016/s0925-4773(99)00005-210354469
  • Fotaki V, Price DJ, Mason JO. Newly identified patterns of Pax2 expression in the developing mouse forebrain. BMC Dev Biol. 2008;8(1):79. doi:10.1186/1471-213X-8-7918700968
  • Pfeffer PL, Bouchard M, Busslinger M. Pax2 and homeodomain proteins cooperatively regulate a 435 bp enhancer of the mouse Pax5 gene at the midbrain-hindbrain boundary. Development. 2000;127(5):1017–1028. doi:10.1242/dev.127.5.101710662641
  • Pillai A, Mansouri A, Behringer R, Westphal H, Goulding M. Lhx1 and Lhx5 maintain the inhibitory-neurotransmitter status of interneurons in the dorsal spinal cord. Development. 2007;134(2):357–366. doi:10.1242/dev.0271717166926
  • Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41(2):281–294. doi:10.1002/(sici)1097-4695(19991105)41:2<281::aid-neu10>3.0.co;2-510512984
  • Rhinn M, Brand M. The midbrain–hindbrain boundary organizer. Curr Opin Neurobiol. 2001;11(1):34–42. doi:10.1016/s0959-4388(00)00171-911179870
  • Favor J, Sandulache R, Neuhäuser-Klaus A, et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A. 1996;93(24):13870–13875. doi:10.1073/pnas.93.24.138708943028
  • Schwarz M, Alvarez-Bolado G, Urbánek P, Busslinger M, Gruss P. Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: evidence from targeted mutations. Proc Natl Acad Sci U S A. 1997;94(26):14518–14523. doi:10.1073/pnas.94.26.145189405645
  • Bouchard M, Pfeffer P, Busslinger M. Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development. 2000;127(17):3703–3713. doi:10.1242/dev.127.17.370310934015
  • Simon HH, Bhatt L, Gherbassi D, Sgadó P, Alberí L. Midbrain dopaminergic neurons: determination of their developmental fate by transcription factors. Ann N Y Acad Sci. 2003;991:36–47. doi:10.1111/j.1749-6632.2003.tb07461.x12846972
  • Niu Y, Moghimyfiroozabad S, Moghimyfiroozabad A. The factors for the early and late development of midbrain dopaminergic neurons segregate into two distinct evolutionary clusters. Brain Disorders. 2021;100002. doi:10.1016/j.dscb.2021.100002
  • Borromeo MD, Meredith DM, Castro DS, et al. A transcription factor network specifying inhibitory versus excitatory neurons in the dorsal spinal cord. Development. 2014;141(14):2803–2812. doi:10.1242/dev.10586624924197
  • Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci. 2006;26(45):11682–11694. doi:10.1523/jneurosci.3656-06.200617093090
  • Fauquier T, Romero E, Picou F, et al. Severe impairment of cerebellum development in mice expressing a dominant-negative mutation inactivating thyroid hormone receptor alpha1 isoform. Dev Biol. 2011;356(2):350–358. doi:10.1016/j.ydbio.2011.05.65721621530
  • Huang M, Huang T, Xiang Y, et al. Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol. 2008;322(2):394–405. doi:10.1016/j.ydbio.2008.06.03118634777
  • Chang JC, Meredith DM, Mayer PR, et al. Prdm13 mediates the balance of inhibitory and excitatory neurons in somatosensory circuits. Dev Cell. 2013;25(2):182–195. doi:10.1016/j.devcel.2013.02.01523639443
  • Guo Z, Zhao C, Huang M, et al. Tlx1/3 and Ptf1a control the expression of distinct sets of transmitter and peptide receptor genes in the developing dorsal spinal cord. J Neurosci. 2012;32(25):8509–8520. doi:10.1523/jneurosci.6301-11.201222723691
  • Mona B, Uruena A, Kollipara RK, et al. Repression by PRDM13 is critical for generating precision in neuronal identity. Elife. 2017;6:e25787. doi:10.7554/eLife.2578728850031
  • Lowenstein ED, Rusanova A, Stelzer J, et al. Olig3 regulates early cerebellar development. Elife. 2021;10:e64684. doi:10.7554/eLife.6468433591268
  • Wei H, Wang M, Lv N, et al. Increased repetitive self-grooming occurs in Pax2 mutant mice generated using CRISPR/Cas9. Behav Brain Res. 2020;393:112803. doi:10.1016/j.bbr.2020.11280332653558
  • Satterstrom FK, Kosmicki JA, Wang J, et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020;180(3):568–584.e23. doi:10.1016/j.cell.2019.12.03631981491
  • Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry. 2019;24(9):1248–1257. doi:10.1038/s41380-019-0426-031089192
  • Di J, Li J, O’Hara B, et al. The role of GABAergic neural circuits in the pathogenesis of autism spectrum disorder. Int J Dev Neurosci. 2020;80(2):73–85. doi:10.1002/jdn.1000531910289
  • Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477(7363):171–178. doi:10.1038/nature1036021796121
  • Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98(3):641–653. doi:10.1111/j.1471-4159.2006.03913.x16787421
  • Fatemi SH, Folsom TD, Reutiman TJ, Thuras PD. Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum. 2009;8(1):64–69. doi:10.1007/s12311-008-0075-319002745
  • Oblak AL, Gibbs TT, Blatt GJ. Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem. 2010;114(5):1414–1423. doi:10.1111/j.1471-4159.2010.06858.x20557420
  • Fung LK, Flores RE, Gu M, et al. Thalamic and prefrontal GABA concentrations but not GABA(A) receptor densities are altered in high-functioning adults with autism spectrum disorder. Mol Psychiatry. 2021;26(5):1634–1646. doi:10.1038/s41380-020-0756-y32376999
  • Puts NAJ, Wodka EL, Harris AD, et al. Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Res. 2017;10(4):608–619. doi:10.1002/aur.169127611990
  • Zapata J, Moretto E, Hannan S, et al. Epilepsy and intellectual disability linked protein Shrm4 interaction with GABA(B)Rs shapes inhibitory neurotransmission. Nat Commun. 2017;8:14536. doi:10.1038/ncomms1453628262662
  • Chuang SH, Reddy DS. Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: therapeutic Insights for Epilepsy. J Pharmacol Exp Ther. 2018;364(2):180–197. doi:10.1124/jpet.117.24467329142081
  • Butler KM, Moody OA, Schuler E, et al. De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early-onset epilepsy. Brain. 2018;141(8):2392–2405. doi:10.1093/brain/awy17129961870
  • May P, Girard S, Harrer M, et al. Rare coding variants in genes encoding GABA(A) receptors in genetic generalised epilepsies: an exome-based case-control study. Lancet Neurol. 2018;17(8):699–708. doi:10.1016/s1474-4422(18)30215-130033060
  • Dörfler P, Busslinger M. C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO j. 1996;15(8):1971–1982. doi:10.1002/j.1460-2075.1996.tb00548.x8617244
  • Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol. 2009;29(4):321–337. doi:10.1016/j.semnephrol.2009.03.00919615554
  • Bouchard M, Grote D, Craven SE, Sun Q, Steinlein P, Busslinger M. Identification of Pax2-regulated genes by expression profiling of the mid-hindbrain organizer region. Development. 2005;132(11):2633–2643. doi:10.1242/dev.0183315872005
  • Hnoonual A, Sripo T, Limprasert P. Whole-exome sequencing identifies a novel heterozygous missense variant of the EN2 gene in two unrelated patients with autism spectrum disorder. Psychiatr Genet. 2016;26(6):297–301. doi:10.1097/ypg.000000000000015327755371
  • Boschian C, Messina A, Bozza A, et al. Impaired Neuronal Differentiation of Neural Stem Cells Lacking the Engrailed-2 Gene. Neuroscience. 2018;386:137–149. doi:10.1016/j.neuroscience.2018.06.03229964155
  • Snijders Blok L, Kleefstra T, Venselaar H, et al. De Novo Variants Disturbing the Transactivation Capacity of POU3F3 Cause a Characteristic Neurodevelopmental Disorder. Am J Hum Genet. 2019;105(2):403–412. doi:10.1016/j.ajhg.2019.06.00731303265
  • Zhang HS, Yan B, Li XB, et al. PAX2 protein induces expression of cyclin D1 through activating AP-1 protein and promotes proliferation of colon cancer cells. J Biol Chem. 2012;287(53):44164–44172. doi:10.1074/jbc.M112.40152123135283
  • Torban E, Dziarmaga A, Iglesias D, et al. PAX2 activates WNT4 expression during mammalian kidney development. J Biol Chem. 2006;281(18):12705–12712. doi:10.1074/jbc.M51318120016368682
  • Saifudeen Z, Liu J, Dipp S, et al. A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One. 2012;7(9):e44869. doi:10.1371/journal.pone.004486922984579
  • Xu B, Zeng DQ, Wu Y, et al. Tumor suppressor menin represses paired box gene 2 expression via Wilms tumor suppressor protein-polycomb group complex. J Biol Chem. 2011;286(16):13937–13944. doi:10.1074/jbc.M110.19783021378168
  • Zeng K, Wu Y, Wang C, et al. ASH2L is involved in promotion of endometrial cancer progression via upregulation of PAX2 transcription. Cancer Sci. 2020;111(6):2062–2077. doi:10.1111/cas.1441332279431
  • Liu P, Gao Y, Huan J, et al. Upregulation of PAX2 promotes the metastasis of esophageal cancer through interleukin-5. Cell Physiol Biochem. 2015;35(2):740–754. doi:10.1159/00036973425613757