109
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Role of Increased Syncytin-1 Expression in Pathogenesis of Anti-N-Methyl-d-Aspartate Receptor Encephalitis

, , ORCID Icon, , , & ORCID Icon show all
Pages 1535-1543 | Received 15 May 2022, Accepted 21 Jul 2022, Published online: 29 Jul 2022

References

  • Jafarpour S, Santoro JD. Autoimmune encephalitis. Pediatr Rev. 2022;43(4):198–211. doi:10.1542/pir.2021-005096
  • Qiao S, Wu HK, Liu LL, et al. Characteristics and prognosis of autoimmune encephalitis in the East of China: a multi-center study. Front Neurol. 2021;12:642078. doi:10.3389/fneur.2021.642078
  • Ball C, Fisicaro R, Morris L 3rd, et al. Brain on fire: an imaging-based review of autoimmune encephalitis. Clin Imaging. 2022;84:1–30. doi:10.1016/j.clinimag.2021.12.011
  • Shan W, Yang H, Wang Q. Neuronal surface antibody-medicated autoimmune encephalitis (limbic encephalitis) in China: a multiple-center, retrospective study. Front Immunol. 2021;12:621599. doi:10.3389/fimmu.2021.621599
  • Sun B, Ramberger M, O’Connor KC, RJM B-R, Irani SR. The B cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat Rev Neurol. 2020;16(9):481–492. doi:10.1038/s41582-020-0381-z
  • Zhang XT, Wang CJ, Wang BJ, Guo SG. The short-term efficacy of combined treatments targeting B cell and plasma cell in severe and refractory Anti-N-methyl-D-aspartate receptor encephalitis: two case reports. CNS Neurosci Ther. 2019;25(1):151–153. doi:10.1111/cns.13078
  • Sveinsson O, Granqvist M, Forslin Y, Blennow K, Zetterberg H, Piehl F. Successful combined targeting of B- and plasma cells in treatment refractory anti-NMDAR encephalitis. J Neuroimmunol. 2017;312:15–18. doi:10.1016/j.jneuroim.2017.08.011
  • Liba Z, Kayserova J, Elisak M, et al. Anti-N-methyl-D-aspartate receptor encephalitis: the clinical course in light of the chemokine and cytokine levels in cerebrospinal fluid. J Neuroinflammation. 2016;13(1):55. doi:10.1186/s12974-016-0507-9
  • Bahrami S, Gryz EA, Graversen JH, Troldborg A, Stengaard Pedersen K, Laska MJ. Immunomodulating peptides derived from different human endogenous retroviruses (HERVs) show dissimilar impact on pathogenesis of a multiple sclerosis animal disease model. Clin Immunol. 2018;191:37–43. doi:10.1016/j.clim.2018.03.007
  • Garcia-Montojo M, Rodriguez-Martin E, Ramos-Mozo P, et al. Syncytin-1/HERV-W envelope is an early activation marker of leukocytes and is upregulated in multiple sclerosis patients. Eur J Immunol. 2020;50(5):685–694. doi:10.1002/eji.201948423
  • Guo L, Gu F, Xu Y, Zhou C. Increased copy number of syncytin-1 in the trophectoderm is associated with implantation of the blastocyst. PeerJ. 2020;8:e10368. doi:10.7717/peerj.10368
  • Wang X, Huang J, Zhu F. Human endogenous retroviral envelope protein Syncytin-1 and inflammatory abnormalities in neuropsychological diseases. Front Psychiatry. 2018;9:422. doi:10.3389/fpsyt.2018.00422
  • Bjerregard B, Ziomkiewicz I, Schulz A, Larsson LI. Syncytin-1 in differentiating human myoblasts: relationship to caveolin-3 and myogenin. Cell Tissue Res. 2014;357(1):355–362. doi:10.1007/s00441-014-1930-9
  • Antony JM, Izad M, Bar-Or A, et al. Quantitative analysis of human endogenous retrovirus-W env in neuroinflammatory diseases. AIDS Res Hum Retroviruses. 2006;22(12):1253–1259. doi:10.1089/aid.2006.22.1253
  • Brutting C, Stangl GI, Staege MS. Vitamin D, Epstein-Barr virus, and endogenous retroviruses in multiple sclerosis - facts and hypotheses. J Integr Neurosci. 2021;20(1):233–238. doi:10.31083/j.jin.2021.01.392
  • Lycke J. Trials of antivirals in the treatment of multiple sclerosis. Acta Neurol Scand. 2017;136(Suppl 201):45–48. doi:10.1111/ane.12839
  • Yan Q, Wu X, Zhou P, et al. HERV-W envelope triggers abnormal dopaminergic neuron process through DRD2/PP2A/AKT1/GSK3 for schizophrenia risk. Viruses. 2022;14(1):1. doi:10.3390/v14010145
  • Tamouza R, Meyer U, Foiselle M, et al. Identification of inflammatory subgroups of schizophrenia and bipolar disorder patients with HERV-W ENV antigenemia by unsupervised cluster analysis. Transl Psychiatry. 2021;11(1):377. doi:10.1038/s41398-021-01499-0
  • Aftab A, Shah AA, Hashmi AM. Pathophysiological role of HERV-W in schizophrenia. J Neuropsychiatry Clin Neurosci. 2016;28(1):17–25. doi:10.1176/appi.neuropsych.15030059
  • Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404. doi:10.1016/S1474-4422(15)00401-9
  • Kristensen MK, Christensen T. Regulation of the expression of human endogenous retroviruses: elements in fetal development and a possible role in the development of cancer and neurological diseases. APMIS. 2021;129(5):241–253. doi:10.1111/apm.13130
  • Fominykh V, Brylev L, Gaskin V, et al. Neuronal damage and neuroinflammation markers in patients with autoimmune encephalitis and multiple sclerosis. Metab Brain Dis. 2019;34(5):1473–1485. doi:10.1007/s11011-019-00452-x
  • Latifi T, Zebardast A, Marashi SM. The role of human endogenous retroviruses (HERVs) in Multiple Sclerosis and the plausible interplay between HERVs, Epstein-Barr virus infection, and vitamin D. Mult Scler Relat Disord. 2022;57:103318. doi:10.1016/j.msard.2021.103318
  • Marrodan M, Alessandro L, Farez MF, Correale J. The role of infections in multiple sclerosis. Mult Scler. 2019;25(7):891–901. doi:10.1177/1352458518823940
  • Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol. 2006;176(12):7636–7644. doi:10.4049/jimmunol.176.12.7636
  • Martinez-Hernandez E, Horvath J, Shiloh-Malawsky Y, Sangha N, Martinez-Lage M, Dalmau J. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology. 2011;77(6):589–593. doi:10.1212/WNL.0b013e318228c136
  • Soygur B, Sati L, Demir R. Altered expression of human endogenous retroviruses syncytin-1, syncytin-2 and their receptors in human normal and gestational diabetic placenta. Histol Histopathol. 2016;31(9):1037–1047.
  • Wang X, Wu X, Huang J, Li H, Yan Q, Zhu F. Human endogenous retrovirus W family envelope protein (HERV-W env) facilitates the production of TNF-alpha and IL-10 by inhibiting MyD88s in glial cells. Arch Virol. 2021;166(4):1035–1045. doi:10.1007/s00705-020-04933-8
  • Wang X, Liu Z, Wang P, et al. Syncytin-1, an endogenous retroviral protein, triggers the activation of CRP via TLR3 signal cascade in glial cells. Brain Behav Immun. 2018;67:324–334. doi:10.1016/j.bbi.2017.09.009
  • Mameli G, Poddighe L, Mei A, et al. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One. 2012;7(9):e44991. doi:10.1371/journal.pone.0044991
  • Fu Y, Zhuang X, Xia X, Li X, Xiao K, Liu X. Correlation between promoter hypomethylation and increased expression of Syncytin-1 in non-small cell lung cancer. Int J Gen Med. 2021;14:957–965. doi:10.2147/IJGM.S294392
  • Zhang M, Liang JQ, Zheng S. Expressional activation and functional roles of human endogenous retroviruses in cancers. Rev Med Virol. 2019;29:2.
  • Bien CG. Management of autoimmune encephalitis. Curr Opin Neurol. 2021;34(2):166–171. doi:10.1097/WCO.0000000000000909
  • Dubey D, Pittock SJ, Kelly CR, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol. 2018;83(1):166–177. doi:10.1002/ana.25131
  • Venkatesan A, Benavides DR. Autoimmune encephalitis and its relation to infection. Curr Neurol Neurosci Rep. 2015;15(3):3. doi:10.1007/s11910-015-0529-1
  • Blackburn KM, Wang C. Post-infectious neurological disorders. Ther Adv Neurol Disord. 2020;13:1756286420952901. doi:10.1177/1756286420952901
  • Handono K, Pratama MZ, Sari DK, et al. Effect of active immunization with IL-17A on B cell function and infection risk in pristane-induced lupus model. Int J Rheum Dis. 2018;21(6):1277–1286. doi:10.1111/1756-185X.13325
  • Sabatino JJ Jr., Probstel AK, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci. 2019;20(12):728–745. doi:10.1038/s41583-019-0233-2