223
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Jiedu Yizhi Formula Improves Cognitive Function by Regulating the Gut Dysbiosis and TLR4/NF-κB Signaling Pathway

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 49-62 | Received 17 Oct 2022, Accepted 07 Dec 2022, Published online: 04 Jan 2023

References

  • Hernandez C, Shukla S. Liposome based drug delivery as a potential treatment option for Alzheimer’s disease. Neural Regen Res. 2022;17(6):1190–1198. doi:10.4103/1673-5374.327328
  • Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2019;394(10204):1145–1158. doi:10.1016/S0140-6736(19)30427-1
  • Jia J, Wei C, Chen S, et al. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement. 2018;14(4):483–491. doi:10.1016/j.jalz.2017.12.006
  • Ren R, Qi J, Lin S, et al. The China Alzheimer report 2022. Gen Psychiatr. 2022;35(1):e100751. doi:10.1136/gpsych-2022-100751
  • Lee PJ, Tsai CL, Liang CS, et al. Biomarkers with plasma amyloid β and tau protein assayed by immunomagnetic reduction in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Acta Neurol Taiwan. 2022;31(2):53–60.
  • Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem. 2019;163:116–135. doi:10.1016/j.ejmech.2018.11.049
  • Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem. 2019;85:82–96. doi:10.1016/j.bioorg.2018.12.017
  • Rai SN, Tiwari N, Singh P, et al. Therapeutic potential of vital transcription factors in alzheimer’s and parkinson’s disease with particular emphasis on transcription factor EB mediated autophagy. Front Neurosci. 2021;15:777347. doi:10.3389/fnins.2021.777347
  • Hou J, Jeon B, Baek J, et al. High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture. J Ginseng Res. 2022;46(1):79–90. doi:10.1016/j.jgr.2021.04.002
  • Abdel Moneim AE. The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis. 2015;30(4):935–942. doi:10.1007/s11011-015-9652-6
  • Singh AK, Rai SN, Maurya A, et al. Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evid Based Complement Alternat Med. 2021;2021:5578574. doi:10.1155/2021/5578574
  • Peng C, Han J, Ye X, et al. IL-33 treatment attenuates the systemic inflammation reaction in acinetobacter baumannii pneumonia by suppressing TLR4/NF-κB signaling. Inflammation. 2018;41(3):870–877. doi:10.1007/s10753-018-0741-7
  • Li Y, Wang B, Liu C, et al. Inhibiting c-Jun N-terminal kinase (JNK)-mediated apoptotic signaling pathway in PC12 cells by a polysaccharide (CCP) from Coptis chinensis against Amyloid-β (Aβ)-induced neurotoxicity. Int J Biol Macromol. 2019;134:565–574. doi:10.1016/j.ijbiomac.2019.05.041
  • Lou Y, Wang C, Tang Q, et al. Paeonol inhibits IL-1β-induced inflammation via PI3K/Akt/NF-κB pathways: in vivo and vitro studies. Inflammation. 2017;40(5):1698–1706. doi:10.1007/s10753-017-0611-8
  • Tian H, Ding N, Guo M, et al. Analysis of learning and memory ability in an Alzheimer’s disease mouse model using the Morris water maze. J Vis Exp. 2019;152. doi:10.3791/60055
  • Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014(6):655–658. doi:10.1101/pdb.prot073411
  • Lundberg DS, Yourstone S, Mieczkowski P, et al. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10(10):999–1002. doi:10.1038/nmeth.2634
  • Ni D, Xu P, Gallagher S. Immunoblotting and immunodetection. Curr Protoc Cell Biol. 2017;74. doi:10.1002/cpcb.18
  • Knopp RC, Baumann KK, Wilson ML, et al. Amyloid beta pathology exacerbates weight loss and brain cytokine responses following low-dose lipopolysaccharide in aged female Tg2576 mice. Int J Mol Sci. 2022;23(4):2377. doi:10.3390/ijms23042377
  • Patrick RP. Role of phosphatidylcholine-DHA in preventing APOE4-associated Alzheimer’s disease. FASEB J. 2019;33(2):1554–1564. doi:10.1096/fj.201801412R
  • Yang W, Liu Y, Xu QQ, et al. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3 β pathway in experimental models of alzheimer’s disease. Oxid Med Cell Longev. 2020;2020:4754195. doi:10.1155/2020/4754195
  • Zhou J, Yu W, Zhang M, et al. Imbalance of microglial TLR4/TREM2 in LPS-Treated APP/ps1 transgenic mice: a potential link between alzheimer’s disease and systemic inflammation. Neurochem Res. 2019;44(5):1138–1151. doi:10.1007/s11064-019-02748-x
  • Thu Thuy Nguyen V, Endres K. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer’s disease. Adv Drug Deliv Rev. 2022;188:114418. doi:10.1016/j.addr.2022.114418
  • Jin X, Liu MY, Zhang DF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther. 2019;25(5):575–590. doi:10.1111/cns.13086
  • Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s Disease. Curr Neuropharmacol. 2020;18(11):1106–1125. doi:10.2174/1570159X18666200528142429
  • Nedelec T, Couvy-Duchesne B, Monnet F, et al. Identifying health conditions associated with Alzheimer’s disease up to 15 years before diagnosis: an agnostic study of French and British health records. Lancet Digit Health. 2022;4(3):e169–e178. doi:10.1016/S2589-7500(21)00275-2
  • Fu P, Gao M, Yung KKL. Association of intestinal disorders with parkinson’s disease and alzheimer’s disease: a systematic review and meta-analysis. ACS Chem Neurosci. 2020;11(3):395–405. doi:10.1021/acschemneuro.9b00607
  • Wang L, Zhang P, Li C, et al. A polysaccharide from Rosa roxburghii Tratt fruit attenuates high-fat diet-induced intestinal barrier dysfunction and inflammation in mice by modulating the gut microbiota. Food Funct. 2022;13(2):530–547. doi:10.1039/d1fo03190b
  • Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–632. doi:10.1177/1747493018778713
  • Rai SN, Chaturvedi VK, Singh BK, et al. Commentary: trem2 deletion reduces late-stage amyloid plaque accumulation, elevates the Aβ42: aβ40Ratio, and exacerbates axonal dystrophy and dendritic Spine Loss in the PS2APP Alzheimer’s mouse model. Front Aging Neurosci. 2020;12:219. doi:10.3389/fnagi.2020.00219
  • Chung J, Das A, Sun X, et al. Genome-wide association and multi-omics studies identify MGMT as a novel risk gene for Alzheimer’s disease among women. Alzheimers Dement. 2022. doi:10.1002/alz.12719
  • Gao S, Nguyen JT, Hendrie HC, et al. Accelerated weight loss and incident dementia in an elderly African-American cohort. J Am Geriatr Soc. 2011;59(1):18–25. doi:10.1111/j.1532-5415.2010.03169.x
  • Vamanu E, Rai SN. The link between obesity, microbiota dysbiosis, and neurodegenerative pathogenesis. Diseases. 2021;9(3):45. doi:10.3390/diseases9030045
  • Sergi G, De Rui M, Coin A, et al. Weight loss and Alzheimer’s disease: temporal and aetiologic connections. Proc Nutr Soc. 2013;72(1):160–165. doi:10.1017/S0029665112002753
  • Hersoug LG, Møller P, Loft S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr Res Rev. 2018;31(2):153–163. doi:10.1017/S0954422417000269
  • Wang J, Zhu X, Li Y, et al. Jiedu-Yizhi formula improves cognitive impairment in an Aβ25-35-induced rat model of alzheimer’s disease by inhibiting pyroptosis. Evid Based Complement Alternat Med. 2022;2022:6091671. doi:10.1155/2022/6091671
  • Mattson MP. Emerging neuroprotective strategies for Alzheimer’s disease: dietary restriction, telomerase activation, and stem cell therapy. Exp Gerontol. 2000;35(4):489–502. doi:10.1016/s0531-5565(00)00115-7
  • Luchsinger JA, Mayeux R. Dietary factors and Alzheimer’s disease. Lancet Neurol. 2004;3(10):579–587. doi:10.1016/S1474-4422(04)00878-6
  • Rogers NT, Steptoe A, Cadar D. Frailty is an independent predictor of incident dementia: evidence from the English longitudinal study of ageing. Sci Rep. 2017;7(1):15746. doi:10.1038/s41598-017-16104-y
  • Hu X, Okamura N, Arai H, et al. Neuroanatomical correlates of low body weight in Alzheimer’s disease: a PET study. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(7–8):1285–1289. doi:10.1016/s0278-5846(02)00291-9
  • Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31. doi:10.1016/j.nicl.2015.03.016
  • Zhang Q, Jin K, Chen B, et al. Overnutrition induced cognitive impairment: insulin resistance, gut-brain axis, and neuroinflammation. Front Neurosci. 2022;16:884579. doi:10.3389/fnins.2022.884579
  • Mun YS, Park HK, Kim J, et al. Association between body mass index and cognitive function in mild cognitive impairment regardless of APOE ε4 status. Dement Neurocogn Disord. 2022;21(1):30–41. doi:10.12779/dnd.2022.21.1.30
  • Tamura BK, Masaki KH, Blanchette P. Weight loss in patients with Alzheimer’s disease. J Nutr Elder. 2007;26(3–4):21–38. doi:10.1300/j052v26n03_02
  • Rai SN, Singh C, Singh A, et al. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimer’s disease. Mol Neurobiol. 2020;57(7):3075–3088. doi:10.1007/s12035-020-01945-y
  • La Joie R, Visani AV, Baker SL, et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med. 2020;12(524):eaau5732. doi:10.1126/scitranslmed.aau5732
  • Blum D, Buée L. Alzheimer’s disease risk, obesity and tau: is insulin resistance guilty? Expert Rev Neurother. 2013;13(5):461–463. doi:10.1586/ern.13.35
  • Stefanoska K, Gajwani M, Tan ARP, et al. Alzheimer’s disease: ablating single master site abolishes tau hyperphosphorylation. Sci Adv. 2022;8(27):eabl8809. doi:10.1126/sciadv.abl8809
  • Chang CW, Shao E, Mucke L. Tau: enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science. 2021;371(6532):eabb8255. doi:10.1126/science.abb8255
  • Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–508. doi:10.1001/jamaneurol.2013.5847
  • Bonfili L, Cecarini V, Berardi S, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep. 2017;7(1):2426. doi:10.1038/s41598-017-02587-2
  • Bai X, Fu R, Duan Z, et al. Ginsenoside Rh4 alleviates antibiotic-induced intestinal inflammation by regulating the TLR4-MyD88-MAPK pathway and gut microbiota composition. Food Funct. 2021;12(7):2874–2885. doi:10.1039/d1fo00242b
  • Tang J, Xu L, Zeng Y, et al. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol. 2021;91:107272. doi:10.1016/j.intimp.2020.107272
  • D’Amato A, Di Cesare Mannelli L, Lucarini E, et al. Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity- and neurotransmission-related proteins in young recipients. Microbiome. 2020;8(1):140. doi:10.1186/s40168-020-00914-w
  • Tran TTT, Corsini S, Kellingray L, et al. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology. FASEB J. 2019;33(7):8221–8231. doi:10.1096/fj.201900071R
  • Binda C, Lopetuso LR, Rizzatti G, et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis. 2018;50(5):421–428. doi:10.1016/j.dld.2018.02.012
  • Gureev AP, Syromyatnikov MY, Ignatyeva DA, et al. Effect of long-term methylene blue treatment on the composition of mouse gut microbiome and its relationship with the cognitive abilities of mice. PLoS One. 2020;15(11):e0241784. doi:10.1371/journal.pone.0241784
  • Wang S, Yao J, Zhou B, et al. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot. 2018;81(1):68–78. doi:10.4315/0362-028X.JFP-17-214
  • Li L, Li R, Zhu R, et al. Salvianolic acid B prevents body weight gain and regulates gut microbiota and LPS/TLR4 signaling pathway in high-fat diet-induced obese mice. Food Funct. 2020;11(10):8743–8756. doi:10.1039/d0fo01116a
  • Mao B, Guo W, Tang X, et al. Inosine pretreatment attenuates LPS-induced lung injury through regulating the TLR4/MyD88/NF-κB signaling pathway in vivo. Nutrients. 2022;14(14):2830. doi:10.3390/nu14142830
  • Verhaar BJH, Hendriksen HMA, de Leeuw FA, et al. Gut microbiota composition is related to AD Pathology. Front Immunol. 2022;12:794519. doi:10.3389/fimmu.2021.794519
  • Wang X, Yu N, Wang Z, et al. Akebia trifoliata pericarp extract ameliorates inflammation through NF-κB/MAPK signaling pathways and modifies gut microbiota. Food Funct. 2020;11(5):4682–4696. doi:10.1039/c9fo02917f
  • Zhou Y, Zhang M, Zhao X, et al. Ammonia exposure induced intestinal inflammation injury mediated by intestinal microbiota in broiler chickens via TLR4/TNF-α signaling pathway. Ecotoxicol Environ Saf. 2021;226:112832. doi:10.1016/j.ecoenv.2021.112832
  • Cui HX, Hu YN, Li JW, et al. Hypoglycemic mechanism of the berberine organic acid salt under the synergistic effect of intestinal flora and oxidative stress. Oxid Med Cell Longev. 2018;2018:8930374. doi:10.1155/2018/8930374
  • Liu J, Ye T, Zhang Y, et al. Protective effect of ginkgolide B against cognitive impairment in mice via regulation of gut microbiota. J Agric Food Chem. 2021;69(41):12230–12240. doi:10.1021/acs.jafc.1c05038
  • Zhang DD, Li HJ, Zhang HR, et al. Poria cocos water-soluble polysaccharide modulates anxiety-like behavior induced by sleep deprivation by regulating the gut dysbiosis, metabolic disorders and TNF-α/NF-κB signaling pathway. Food Funct. 2022;13(12):6648–6664. doi:10.1039/d2fo00811d
  • Davies DA, Adlimoghaddam A, Albensi BC. Role of Nrf2 in plasticity s and memory in alzheimer’s disease. Cells. 2021;10(8):1884. doi:10.3390/cells10081884
  • Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168(1–2):37–57. doi:10.1016/j.cell.2016.12.012
  • Wan H, Han J, Tang S, et al. Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice. Food Funct. 2020;11(1):1074–1086. doi:10.1039/c9fo02425e
  • Velloso LA, Folli F, Saad MJ. TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation. Endocr Rev. 2015;36(3):245–271. doi:10.1210/er.2014-1100
  • Akbar M, Shabbir A, Rehman K, et al. Neuroprotective potential of berberine in modulating Alzheimer’s disease via multiple signaling pathways. J Food Biochem. 2021;45(10):e13936. doi:10.1111/jfbc.13936
  • He W, Wang C, Chen Y, et al. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol Rep. 2017;69(6):1341–1348. doi:10.1016/j.pharep.2017.06.006
  • Živančević K, Baralić K, Bozic D, et al. Involvement of environmentally relevant toxic metal mixture in Alzheimer’s disease pathway alteration and protective role of berberine: bioinformatics analysis and toxicogenomic screening. Food Chem Toxicol. 2022;161:112839. doi:10.1016/j.fct.2022.112839
  • Lin X, Zhang N. Berberine: pathways to protect neurons. Phytother Res. 2018;32(8):1501–1510. doi:10.1002/ptr.6107
  • Yan T, Zhang X, Mao Q, et al. Alpinae Oxyphyllae Fructus alleviated LPS-induced cognitive impairments via PI3K/AKT/NF-κB signaling pathway. Environ Toxicol. 2022;37(3):489–503. doi:10.1002/tox.23415
  • Yin Z, Gao D, Du K, et al. Rhein Ameliorates Cognitive Impairment in an APP/PS1 transgenic mouse model of Alzheimer’s disease by relieving oxidative stress through activating the SIRT1/PGC-1α pathway. Oxid Med Cell Longev. 2022;2022:2524832. doi:10.1155/2022/2524832
  • Mank A, Rijnhart JJM, van Maurik IS, et al. A longitudinal study on quality of life along the spectrum of Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):132. doi:10.1186/s13195-022-01075-8