234
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

VSIG4 Silencing Inhibits Glioblastoma Growth by Regulating the JAK2/STAT3 Pathway

, , & ORCID Icon
Pages 1397-1408 | Received 10 Feb 2023, Accepted 22 May 2023, Published online: 03 Jun 2023

References

  • Zhang P, Zhang Y, Ji N. Challenges in the treatment of glioblastoma by chimeric antigen receptor T-cell immunotherapy and possible solutions. Front Immunol. 2022;13:927132. doi:10.3389/fimmu.2022.927132
  • Batash R, Asna N, Schaffer P, et al. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr Med Chem. 2017;24:3002–3009. doi:10.2174/0929867324666170516123206
  • Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2016;375:263–273. doi:10.1016/j.canlet.2016.01.024
  • Gong EY, Jo HA, Park SH, et al. VSIG4 induces epithelial-mesenchymal transition of renal tubular cells under high-glucose conditions. Life. 2020;10. doi:10.3390/life10120354
  • Zhu S, Tan W, Li W, et al. Low expression of VSIG4 is associated with poor prognosis in hepatocellular carcinoma patients with hepatitis B infection. Cancer Manag Res. 2018;10:3697–3705. doi:10.2147/CMAR.S165822
  • Xu T, Jiang Y, Yan Y, et al. VSIG4 is highly expressed and correlated with poor prognosis of high-grade glioma patients. Am J Transl Res. 2015;7:1172–1180.
  • Zhang XH, Qian Y, Li Z, et al. Let-7g-5p inhibits epithelial-mesenchymal transition consistent with reduction of glioma stem cell phenotypes by targeting VSIG4 in glioblastoma. Oncol Rep. 2016;36:2967–2975. doi:10.3892/or.2016.5098
  • Yang K, Wang Z. Rab18 interacted with V-set and immunoglobulin domain-containing 4 (VSIG4) to involve in the apoptosis of glioma and the sensitivity to temozolomide. Bioengineered. 2021;12:1391–1402. doi:10.1080/21655979.2021.1919012
  • Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer. Biomed Pharmacother. 2020;121:109595. doi:10.1016/j.biopha.2019.109595
  • Huang X, Feng Z, Jiang Y, et al. VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1β in macrophages. Sci Adv. 2019;5:eaau7426. doi:10.1126/sciadv.aau7426
  • Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–1421. doi:10.1126/science.8197455
  • Yu H, Lee H, Herrmann A, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–746. doi:10.1038/nrc3818
  • Yang J, Zhou J, Wang X, et al. Erythropoietin attenuates experimental contrast-induced nephrology: a role for the janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Front Med. 2021;8:634882. doi:10.3389/fmed.2021.634882
  • Cheng M, Liu P, Xu LX. Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment. J Inorg Biochem. 2020;210:111159. doi:10.1016/j.jinorgbio.2020.111159
  • Liu M, Li Y, Kong B, et al. Polydatin down-regulates the phosphorylation level of STAT3 and induces pyroptosis in triple-negative breast cancer mice with a high-fat diet. Ann Transl Med. 2022;10:173. doi:10.21037/atm-22-73
  • Tveden-Nyborg P, Bergmann TK, Jessen N, et al. BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2021;128:4–8. doi:10.1111/bcpt.13492
  • Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102. doi:10.1093/nar/gkx247
  • Bowman RL, Wang Q, Carro A, et al. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol. 2017;19:139–141. doi:10.1093/neuonc/now247
  • Kashima M, Deguchi A, Tezuka A, et al. Low-cost and multiplexable whole mRNA-Seq library preparation method with Oligo-dT magnetic beads for illumina sequencing platforms. Bio Protoc. 2020;10:e3496. doi:10.21769/BioProtoc.3496
  • Chen AX, Gartrell RD, Zhao J, et al. Single-cell characterization of macrophages in glioblastoma reveals MARCO as a mesenchymal pro-tumor marker. Genome Med. 2021;13:88. doi:10.1186/s13073-021-00906-x
  • Wang S, Yao F, Lu X, et al. Temozolomide promotes immune escape of GBM cells via upregulating PD-L1. Am J Cancer Res. 2019;9:1161–1171.
  • Chavda V, Patel V, Yadav D, et al. Therapeutics and research related to glioblastoma: advancements and future targets. Curr Drug Metab. 2020;21:186–198. doi:10.2174/1389200221666200408083950
  • Brandao M, Simon T, Critchley G, et al. Astrocytes, the rising stars of the glioblastoma microenvironment. Glia. 2019;67:779–790. doi:10.1002/glia.23520
  • Byun JM, Jeong DH, Choi IH, et al. The Significance of VSIG4 expression in ovarian cancer. Int J Gynecol Cancer. 2017;27:872–878. doi:10.1097/IGC.0000000000000979
  • Liao Y, Guo S, Chen Y, et al. VSIG4 expression on macrophages facilitates lung cancer development. Lab Invest. 2014;94:706–715. doi:10.1038/labinvest.2014.73
  • Zong WF, Liu C, Zhang Y, et al. Identification of a signature for predicting prognosis and immunotherapy response in patients with glioma. J Oncol. 2022;2022:8615949. doi:10.1155/2022/8615949
  • Grassi G, Robles NR, Seravalle G, et al. Lercanidipine in the management of hypertension: an update. J Pharmacol Pharmacother. 2017;8:155–165. doi:10.4103/jpp.JPP_34_17
  • Peng W, Li W, Zhang X, et al. The intercorrelation among CCT6A, CDC20, CCNB1, and PLK1 expressions and their clinical value in papillary thyroid carcinoma prognostication. J Clin Lab Anal. 2022;36:e24609. doi:10.1002/jcla.24609
  • Liu K, Pu J, Nie Z, et al. Ivacaftor inhibits glioblastoma stem cell maintenance and tumor progression. Front Cell Dev Biol. 2021;9:678209. doi:10.3389/fcell.2021.678209
  • Black RA, Kronheim SR, Merriam JE, et al. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem. 1989;264:5323–5326. doi:10.1016/S0021-9258(18)83546-3
  • Shi CX, Wang Y, Chen Q, et al. Extracellular histone H3 induces pyroptosis during sepsis and may act through NOD2 and VSIG4/NLRP3 Pathways. Front Cell Infect Microbiol. 2020;10:196. doi:10.3389/fcimb.2020.00196
  • Small AG, Al-Baghdadi M, Quach A, et al. Complement receptor immunoglobulin: a control point in infection and immunity, inflammation and cancer. Swiss Med Wkly. 2016;146:w14301. doi:10.4414/smw.2016.14301
  • Mengqi Zhuang XD, Song W, Chen H, Guan H, Yang Y, Zhang Z. Xinzhe Dong Correlation of IL-6 and JAK2/STAT3 signaling pathway with prognosis of nasopharyngeal carcinoma patients. Aging. 2021;13:16667–16683. doi:10.18632/aging.203186
  • Jiao XX, Lin SY, Lian SX, et al. The inhibition of the breast cancer by PPARgamma agonist pioglitazone through JAK2/STAT3 pathway. Neoplasma. 2020;67:834–842. doi:10.4149/neo_2020_190805N716
  • Doheny D, Sirkisoon S, Carpenter RL, et al. Combined inhibition of JAK2-STAT3 and SMO-GLI1/tGLI1 pathways suppresses breast cancer stem cells, tumor growth, and metastasis. Oncogene. 2020;39:6589–6605. doi:10.1038/s41388-020-01454-1