72
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Multisensory Fusion Training and 7, 8-Dihydroxyflavone Improve Amyloid-β-Induced Cognitive Impairment, Anxiety, and Depression-Like Behavior in Mice Through Multiple Mechanisms

, , , , , ORCID Icon & show all
Pages 1247-1270 | Received 28 Feb 2024, Accepted 05 Jun 2024, Published online: 12 Jun 2024

References

  • Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol. 1981;10:184–192.
  • Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 2008;7:812–826. doi:10.1016/S1474-4422(08)70169-8
  • Nakagawasai O, Lin J-R, Odaira T, et al. Scabronine G methyl ester improves memory-related behavior and enhances hippocampal cell proliferation and long-term potentiation via the BDNF-CREB pathway in olfactory bulbectomized mice. Front Pharmacol. 2020;11:583291. doi:10.3389/fphar.2020.583291
  • Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397:1577–1590. doi:10.1016/S0140-6736(20)32205-4
  • Götz J, Bodea L-G, Goedert M. Rodent models for Alzheimer disease. Nat Rev Neurosci. 2018;19:583–598. doi:10.1038/s41583-018-0054-8
  • Kakuda N, Yamaguchi H, Akazawa K, et al. γ-Secretase activity is associated with braak senile plaque stages. Am J Pathol. 2020;190:1323–1331. doi:10.1016/j.ajpath.2020.02.009
  • Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–293. doi:10.1038/nn.2741
  • Gratuze M, Holtzman DM. Targeting pre-synaptic tau accumulation: a new strategy to counteract tau-mediated synaptic loss and memory deficits. Neuron. 2021;109:741–743. doi:10.1016/j.neuron.2021.02.014
  • Fronza MG, Alves D, Praticò D, Savegnago L. The neurobiology and therapeutic potential of multi-targeting β-secretase, glycogen synthase kinase 3β and acetylcholinesterase in Alzheimer’s disease. Ageing Res Rev. 2023;90:102033. doi:10.1016/j.arr.2023.102033
  • Li W-Y, Gao J-Y, Lin S-Y, et al. Effects of involuntary and voluntary exercise in combination with acousto-optic stimulation on adult neurogenesis in an alzheimer’s mouse model. Mol Neurobiol. 2022;59:3254–3279. doi:10.1007/s12035-022-02784-9
  • Liu Z-T, Ma Y-T, Pan S-T, et al. Effects of involuntary treadmill running in combination with swimming on adult neurogenesis in an Alzheimer’s mouse model. Neurochem Int. 2022;155:105309. doi:10.1016/j.neuint.2022.105309
  • Cassé-Perrot C, Lanteaume L, Deguil J, et al. Neurobehavioral and cognitive changes induced by sleep deprivation in healthy volunteers. CNS Neurol Disord Drug Targets. 2016;15:777–801. doi:10.2174/1871527315666160518125156
  • Tai LM, Ghura S, Koster KP, et al. APOE -modulated Aβ-induced neuroinflammation in Alzheimer’s disease: current landscape, novel data, and future perspective. J Neurochem. 2015;133:465–488. doi:10.1111/jnc.13072
  • Guiney H, Lucas SJ, Cotter JD, Machado L. Evidence cerebral blood-flow regulation mediates exercise-cognition links in healthy young adults. Neuropsychology. 2015;29:1–9. doi:10.1037/neu0000124
  • Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25:4217–4221. doi:10.1523/JNEUROSCI.0496-05.2005
  • Lazarov O, Robinson J, Tang Y-P, et al. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell. 2005;120:701–713. doi:10.1016/j.cell.2005.01.015
  • MacRae PG, Spirduso WW, Walters TJ, Farrar RP, Wilcox RE. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology (Berl). 1987;92:236–240. doi:10.1007/BF00177922
  • Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev. 2004;3:445–464. doi:10.1016/j.arr.2004.08.001
  • Lu X, Moeini M, Li B, et al. Voluntary exercise increases brain tissue oxygenation and spatially homogenizes oxygen delivery in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2020;88:11–23. doi:10.1016/j.neurobiolaging.2019.11.015
  • Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab. 2014;25:89–98. doi:10.1016/j.tem.2013.10.006
  • Intlekofer KA, Cotman CW. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis. 2013;57:47–55. doi:10.1016/j.nbd.2012.06.011
  • Ginsberg SD, Che S, Wuu J, Counts SE, Mufson EJ. Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J Neurochem. 2006;97:475–487. doi:10.1111/j.1471-4159.2006.03764.x
  • Schimidt HL, Garcia A, Izquierdo I, Mello-Carpes PB, Carpes FP. Strength training and running elicit different neuroprotective outcomes in a β-amyloid peptide-mediated Alzheimer’s disease model. Physiol Behav. 2019;206:206–212. doi:10.1016/j.physbeh.2019.04.012
  • Kurudenkandy FR, Zilberter M, Biverstål H, et al. Amyloid-β-induced action potential desynchronization and degradation of hippocampal gamma oscillations is prevented by interference with peptide conformation change and aggregation. J Neurosci. 2014;34:11416–11425. doi:10.1523/JNEUROSCI.1195-14.2014
  • Benussi A, Cantoni V, Grassi M, et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in alzheimer’s disease. Ann Neurol. 2022;92:322–334. doi:10.1002/ana.26411
  • Martorell AJ, Paulson AL, Suk HJ, et al. Multi-sensory gamma stimulation ameliorates alzheimer’s-associated pathology and improves cognition. Cell. 2019;177:256–271.
  • Iaccarino HF, Singer AC, Martorell AJ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230–235. doi:10.1038/nature20587
  • Adaikkan C, Albisetti GW, Sivakumar N, et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron. 2019;103:102. doi:10.1016/j.neuron.2019.04.022
  • Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci. 2016;59:1006–1023. doi:10.1007/s11427-016-5083-9
  • Aaldijk E, Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer’s disease: a narrative review. Ageing Res Rev. 2022;75:101556. doi:10.1016/j.arr.2021.101556
  • Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–478. doi:10.1038/s41575-019-0157-3
  • Bárcena C, Valdés-Mas R, Mayoral P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Med. 2019;25:1234–1242. doi:10.1038/s41591-019-0504-5
  • Podyma B, Parekh K, Güler AD, Deppmann CD. Metabolic homeostasis via BDNF and its receptors. Trends Endocrinol Metab. 2021;32:488–499. doi:10.1016/j.tem.2021.04.005
  • Liu S, Li S, Xia Y, et al. Effects of multi-mode physical stimulation on APP/PS1 Alzheimer’s disease model mice. Heliyon. 2022;8:e12366. doi:10.1016/j.heliyon.2022.e12366
  • Liao J, Chen C, Ahn EH, et al. Targeting both BDNF/TrkB pathway and delta-secretase for treating Alzheimer’s disease. Neuropharmacology. 2021;197:108737. doi:10.1016/j.neuropharm.2021.108737
  • Yang S, Zhu G. 7,8-Dihydroxyflavone and neuropsychiatric disorders: a translational perspective from the mechanism to drug development. Curr Neuropharmacol. 2022;20:1479–1497. doi:10.2174/1570159X19666210915122820
  • Zhang Z, Liu X, Schroeder JP, et al. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2014;39:638–650. doi:10.1038/npp.2013.243
  • Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–489. doi:10.1126/science.1079469
  • Kim D, Cho J, Kang H. Protective effect of exercise training against the progression of Alzheimer’s disease in 3xTg-AD mice. Behav Brain Res. 2019;374:112105. doi:10.1016/j.bbr.2019.112105
  • Siteneski A, Olescowicz G, Pazini FL, et al. Antidepressant-like and pro-neurogenic effects of physical exercise: the putative role of FNDC5/irisin pathway. J Neural Transm. 2020;127:355–370. doi:10.1007/s00702-020-02143-9
  • Walsh RN, Cummins RA. The Open-Field Test: a critical review. Psychol Bull. 1976;83:482–504. doi:10.1037/0033-2909.83.3.482
  • Sawangjit A, Oyanedel CN, Niethard N, et al. The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature. 2018;564:109–113. doi:10.1038/s41586-018-0716-8
  • Fabris D, Carvalho MC, Brandão ML, et al. Sex-dependent differences in the anxiolytic-like effect of cannabidiol in the elevated plus-maze. J Psychopharmacol. 2022;36:1371–1383. doi:10.1177/02698811221125440
  • Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625. doi:10.1016/j.neubiorev.2005.03.009
  • Armario A. The forced swim test: historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci Biobehav Rev. 2021;128:74–86. doi:10.1016/j.neubiorev.2021.06.014
  • Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–858. doi:10.1038/nprot.2006.116
  • Guo J, Chang L, Li C, et al. SB203580 reverses memory deficits and depression-like behavior induced by microinjection of Aβ1-42 into hippocampus of mice. Metab Brain Dis. 2017;32:57–68. doi:10.1007/s11011-016-9880-4
  • Song M, Martinowich K, Lee FS. BDNF at the synapse: why location matters. Mol Psychiatry. 2017;22:1370–1375. doi:10.1038/mp.2017.144
  • Jin W. Regulation of BDNF-TrkB signaling and potential therapeutic strategies for parkinson’s disease. J Clin Med. 2020;9:257. doi:10.3390/jcm9010257
  • Wu C, Yang L, Tucker D, et al. Beneficial effects of exercise pretreatment in a sporadic alzheimer’s rat model. Med Sci Sports Exerc. 2018;50:945–956. doi:10.1249/MSS.0000000000001519
  • Erawijantari PP, Mizutani S, Shiroma H, et al. Influence of gastrectomy for gastric cancer treatment on faecal microbiome and metabolome profiles. Gut. 2020;69:1404–1415. doi:10.1136/gutjnl-2019-319188
  • Wang X, Yang S, Li S, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020;69:2131–2142. doi:10.1136/gutjnl-2019-319766
  • Rostagno AA, Giallongo S, Orlando L. Pathogenesis of Alzheimer’s Disease. Int J Mol Sci. 2022;24:24. doi:10.3390/ijms24010024
  • Forny-Germano L, Lyra e Silva NM, Batista AF, et al. Alzheimer’s disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629–13643. doi:10.1523/JNEUROSCI.1353-14.2014
  • Prado lima MG, Schimidt HL, Garcia A, et al. Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc Natl Acad Sci U S A. 2018;115:E2403–E2409. doi:10.1073/pnas.1718435115
  • De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci. 2020;9:394–404. doi:10.1016/j.jshs.2020.01.004
  • López-Ortiz S, Valenzuela PL, Seisdedos MM, et al. Exercise interventions in Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Ageing Res Rev. 2021;72:101479. doi:10.1016/j.arr.2021.101479
  • Fonte C, Smania N, Pedrinolla A, et al. Comparison between physical and cognitive treatment in patients with MCI and Alzheimer’s disease. Aging. 2019;11:3138–3155. doi:10.18632/aging.101970
  • Nigam SM, Xu S, Kritikou JS, et al. Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP. J Neurochem. 2017;142:286–296. doi:10.1111/jnc.14034
  • Coulson EJ, Bartlett PF. An exercise path to preventing Alzheimer’s disease: an editorial highlight on ‘exercise and BDNF reduce Ab production by enhancing α-secretase processing of APP’. J Neurochem. 2017;142:191–193. doi:10.1111/jnc.14038
  • Buzsáki G, Wang X-J. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–225. doi:10.1146/annurev-neuro-062111-150444
  • Garza KM, Zhang L, Borron B, Wood LB, Singer AC. Gamma visual stimulation induces a neuroimmune signaling profile distinct from acute neuroinflammation. J Neurosci. 2020;40:1211–1225. doi:10.1523/JNEUROSCI.1511-19.2019
  • Ahuja P, Ng CF, Pang BPS, et al. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy. 2022;18:1367–1384. doi:10.1080/15548627.2021.1985257
  • Chen C, Wang Z, Zhang Z, et al. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proc Natl Acad Sci U S A. 2018;115:578–583. doi:10.1073/pnas.1718683115
  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138:155–175. doi:10.1016/j.pharmthera.2013.01.004
  • Lv -Q-Q, Wu W-J, Guo X-L, et al. Antidepressant activity of astilbin: involvement of monoaminergic neurotransmitters and BDNF signal pathway. Biol Pharm Bull. 2014;37:987–995. doi:10.1248/bpb.b13-00968
  • Leal G, Afonso PM, Salazar IL, Duarte CB. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 2015;1621:82–101. doi:10.1016/j.brainres.2014.10.019
  • Jiang C, Lin W-J, Sadahiro M, et al. VGF function in depression and antidepressant efficacy. Mol Psychiatry. 2018;23:1632–1642. doi:10.1038/mp.2017.233
  • Zeng M, Shang Y, Araki Y, et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell. 2016;166:1163–1175.
  • Guan Y, Lau SL-F, Chan GC-K, et al. Hericium coralloides ameliorates alzheimer’s disease pathologies and cognitive disorders by activating Nrf2 signaling and regulating gut microbiota. Nutrients. 2023;16:15. doi:10.3390/nu16010015
  • Wang C, Chen S, Guo H, et al. Forsythoside A Mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int J Biol Sci. 2022;18:2075–2090. doi:10.7150/ijbs.69714
  • Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci. 2021;264:118627. doi:10.1016/j.lfs.2020.118627
  • Chen Y, Fang L, Chen S, et al. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of alzheimer’s disease. Biomed Res Int. 2020;2020:8456596. doi:10.1155/2020/8456596
  • Wilkins JM, Trushina E. Application of metabolomics in alzheimer’s disease. Front Neurol. 2017;8:719. doi:10.3389/fneur.2017.00719
  • Dinamarca MC, Ríos JA, Inestrosa NC. Postsynaptic receptors for amyloid-β oligomers as mediators of neuronal damage in alzheimer’s disease. Front Physiol. 2012;3:464. doi:10.3389/fphys.2012.00464