159
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Green One-Step Synthesis of Medical Nanoagents for Advanced Radiation Therapy

, ORCID Icon, ORCID Icon, , , , ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 61-76 | Published online: 07 Aug 2020

References

  • Kobayashi K, Frohlich H, Usami N, Takakura K, Le Sech C. Enhancement of X-ray-induced breaks in DNA bound to molecules containing platinum: a possible application to hadrontherapy. Radiat Res. 2002;157(1):32–37. doi:10.1667/0033-7587(2002)157[0032:EOXRIB]2.0.CO;211754639
  • Biston M-C, Joubert A, Adam J-F, et al. Cure of fisher rats bearing radioresistant F98 glioma treated with cis-platinum and irradiated with monochromatic synchrotron X-Rays. Cancer Res. 2004;64(7):2317–2323. doi:10.1158/0008-5472.CAN-03-360015059878
  • Barabadi H, Vahidi H, Damavandi Kamali K, et al. Emerging theranostic gold nanomaterials to combat lung cancer: a systematic review. J Clust Sci. 2020;31(2):323–330. doi:10.1007/s10876-019-01650-4
  • Barabadi H, Vahidi H, Damavandi Kamali K, et al. Emerging theranostic silver nanomaterials to combat colorectal cancer: a systematic review. J Clust Sci. 2020;31(2):311–321. doi:10.1007/s10876-019-01668-8
  • Barabadi H, Hosseini O, Damavandi Kamali K, et al. Emerging theranostic silver nanomaterials to combat lung cancer: a systematic review. J Clust Sci. 2020;31:1. doi:10.1007/s10876-019-01639-z
  • Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49(18):N309N315. doi:10.1088/0031-9155/49/18/N0315509078
  • Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60(8):977–985. doi:10.1211/jpp.60.8.000518644191
  • Li Y, Yun KH, Lee H, Goh SH, Suh YG, Choi Y. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials. 2019;197:12–19. doi:10.1016/j.biomaterials.2019.01.00430623793
  • Bonvalot S, Le Pechoux C, De Baere T, et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin Cancer Res. 2017;23(4):908–917. doi:10.1158/1078-0432.CCR-16-129727998887
  • Lux F, Tran VL, Thomas E, et al. AGuIX ® from bench to bedside-transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br J Radiol. 2019;92(1093):1–19.
  • Verry C, Sancey L, Dufort S, et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a Phase I study protocol. BMJ Open. 2019;9:2. doi:10.1136/bmjopen-2018-023591
  • Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16(24):6139–6149. doi:10.1158/1078-0432.CCR-10-097820876255
  • Porcel E, Kobayashi K, Usami N, Remita H, Le Sech C, Lacombe S. Photosensitization of plasmid-DNA loaded with platinum nano-particles and irradiated by low energy X-rays. J Phys Conf Ser. 2011;261(1):012004. doi:10.1088/1742-6596/261/1/012004
  • Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale. 2012;4(16):4830. doi:10.1039/c2nr31227a22767423
  • Wang Y, Liu J, Ma X, Liang XJ. Nanomaterial-assisted sensitization of oncotherapy. Nano Res. 2018;11(6):2932–2950. doi:10.1007/s12274-017-1961-0
  • Durante M, Loeffler JS. Charged particles in radiation oncology. Nat Rev Clin Oncol. 2010;7(1):37–43. doi:10.1038/nrclinonc.2009.18319949433
  • Vitolo V, Fiore MR, Barcellini A, et al. Carbon ion radiotherapy in the management of the tumors of the peripheral nervous system. Anticancer Res. 2019;39(2):909–913. doi:10.21873/anticanres.1319330711975
  • IAEA and ICRU. Relative biological effectiveness in ion beam therapy. In: International Atomic Energy Agency, Relative Biological Effectiveness in Ion Beam Therapy, Technical Reports Series Vienna: IAEA; 2008:461.
  • Kaur H, Pujari G, Semwal MK, Sarma A, Avasthi DK. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2013;301:7–11. doi:10.1016/j.nimb.2013.02.015
  • Kim J-K, Seo S-J, Kim K-H, et al. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology. 2010;21(42):425102. doi:10.1088/0957-4484/21/42/42510220858930
  • Dollinger G. Comment on ‘Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect.’ Nanotechnology. 2011;22(24):248001. doi:10.1088/0957-4484/22/24/24800121508462
  • Le Sech C, Kobayashi K, Usami N, Furusawa Y, Porcel E, Lacombe S. Comment on “Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles”. Appl Phys Lett. 2012;100(2):026101. doi:10.1063/1.3675570
  • Li F, Li Z, Jin X, et al. Radiosensitizing effect of gadolinium oxide nanocrystals in NSCLC cells under carbon ion irradiation. Nanoscale Res Lett. 2019;14:1. doi:10.1186/s11671-019-3152-230607516
  • Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, et al. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano. 2019;4:100027. doi:10.1016/j.onano.2018.100027
  • Li S, Bouchy S, Penninckx S, et al. Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. Nanomedicine. 2019;14(3):317–333. doi:10.2217/nnm-2018-016130675822
  • Salado-Leza D, Traore A, Porcel E, et al. Radio-enhancing properties of bimetallic Au: Pt nanoparticles: experimental and theoretical evidence. Int J Mol Sci. 2019;20(22):5648. doi:10.3390/ijms20225648
  • Yang X, Salado‐Leza D, Porcel E, et al. A facile one‐pot synthesis of versatile PEGylated platinum nanoflowers and their application in radiation therapy. Int J Mol Sci. 2020;21(5):1–20.
  • Schlatholter T, Eustache P, Porcel E, et al. Improving proton therapy by metal-containing nanoparticles: nanoscale insights. Int J Nanomedicine. 2016;11:1549. doi:10.2147/IJN.S9941027143877
  • Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology. 2010;21(8):85103. doi:10.1088/0957-4484/21/8/08510320101074
  • Porcel E, Tillement O, Lux F, et al. Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomedicine. 2014;10(8):1601–1608. doi:10.1016/j.nano.2014.05.00524846523
  • Alric C, Miladi I, Kryza D, et al. The biodistribution of gold nanoparticles designed for renal clearance. Nanoscale. 2013;5(13):5930–5939. doi:10.1039/c3nr00012e23702968
  • Maggiorella L, Barouch G, Devaux C, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Futur Oncol. 2012;8(9):1167–1181. doi:10.2217/fon.12.96
  • Mignot A, Truillet C, Lux F, et al. A top-down synthesis route to ultrasmall multifunctional gd-based silica nanoparticles for theranostic applications. Chem A Eur J. 2013;19(19):6122–6136. doi:10.1002/chem.201203003
  • Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev. 2017;46(16):4951–4975.28696452
  • Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett. 2013;8(1):474. doi:10.1186/1556-276X-8-47424225302
  • Akar B, Pushpavanam K, Narayanan E, Rege K, Heys JJ. Mechanistic investigation of radiolysis-induced gold nanoparticle formation for radiation dose prediction. Biomed Phys Eng Express. 2018;4(6):549–559. doi:10.1088/2057-1976/aac280
  • Abdelghany AM, Abdelrazek EM, Badr SI, Abdel-Aziz MS, Morsi MA. Effect of gamma-irradiation on biosynthesized gold nanoparticles using chenopodium murale leaf extract. J Saudi Chem Soc. 2017;21(5):528–537. doi:10.1016/j.jscs.2015.10.002
  • Biswal J, Ramnani SP, Shirolikar S, Sabharwal S. Seedless synthesis of gold nanorods employing isopropyl radicals generated using gamma radiolysis technique. Int J Nanotechnol. 2010;7(912):907–918. doi:10.1504/IJNT.2010.034697
  • Nguyen TKL, Nguyen ND, Dang VP, et al. Synthesis of platinum nanoparticles by gamma co-60 ray irradiation method using chitosan as stabilizer. Adv Mater Sci Eng. 2019;2019:1–6. doi:10.1155/2019/9624374
  • Cele T, Maaza M, Gibaud A. Synthesis of platinum nanoparticles by gamma radiolysis. MRS Adv. 2018;3(4243):2537–2557. doi:10.1557/adv.2018.233
  • Keita B, Nadjo L, De Cointet C, Amblard J, Belloni J. STM investigation of platinum oligomer clusters prepared by radiolysis. Chem Phys Lett. 1996;249(56):297–303. doi:10.1016/0009-2614(95)01425-X
  • Gharibshahi E, Saion E, Ashraf A, Gharibshahi L. Size_controlled and optical properties of platinum nanoparticles by gamma radiolytic synthesis. Appl Radiat Isot. 2017;130:211–217. doi:10.1016/j.apradiso.2017.09.01229028581
  • Belapurkar AD, Kapoor S, Kulshreshtha SK, Mittal JP. Radiolytic preparation and catalytic properties of platinum nanoparticles. Mater Res Bull. 2001;36(12):145–151. doi:10.1016/S0025-5408(01)00499-8
  • Pasanphan W, Chunkoh L, Choofong S. Magnetic gadolinium-chitosan composite nanoparticles created by radiolytic synthesis. ICCM Int Conf Compos Mater. 2011;6–11.
  • Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R. Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. Nanomedicine Nanotechnology, Biol Med. 2014;10(8):1751–1755. doi:10.1016/j.nano.2014.06.004
  • Treguer M, de Cointet C, Remita H, et al. Dose rate effects on radiolytic synthesis of gold_silver bimetallic clusters in solution. J Phys Chem B. 1998;102(22):4310–4321. doi:10.1021/jp981467n
  • Remita H, Lampre I, Mostafavi M, Balanzat E, Bouffard S. Comparative study of metal clusters induced in aqueous solutions by γ-rays, electron or C6+ ion beam irradiation. Radiat Phys Chem. 2005;72(5):575–586. doi:10.1016/j.radphyschem.2004.03.042
  • Remita H, Remita S. Metal clusters and nanomaterials: contribution of radiation chemistry In: Wishart JF, Madhava Rao BS, editors. Recent Trends in Radiation Chemistry. World Scientific; 2010:347–383.
  • Belloni J, Mostafavi M, Remita H, Marignier J. Delcourt and M-O. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem. 1998;22(11):1239–1255. doi:10.1039/a801445k
  • Gharibshahi E, Saion E. Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int J Mol Sci. 2012;13(12):14723–14741. doi:10.3390/ijms13111472323203091
  • Huang K, Ma H, Liu J, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6(5):4483–4493. doi:10.1021/nn301282m22540892
  • Puglia C, Nilsson A, Hernnäs B, Karis O, Bennich P, Mårtensson N. Physisorbed, chemisorbed and dissociated O2 on Pt(111) studied by different core level spectroscopy methods. Surf Sci. 1995;342(13):119–133. doi:10.1016/0039-6028(95)00798-9
  • Liu F, Zhao Z, Qiu L, Zhao L. Applications of XPS on nanoscale material research. J Surf Anal. 2009;15(3):271–273. doi:10.1384/jsa.15.271
  • Fu X, Wang Y, Wu N, Gui L, Tang Y. Surface modification of small platinum nanoclusters with alkylamine and alkylthiol: an XPS study on the influence of organic ligands on the pt 4f binding energies of small platinum nanoclusters. J Colloid Interface Sci. 2001;243(2):326–330. doi:10.1006/jcis.2001.7861
  • López GP, Castner DG, Ratner BD. XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf Interface Anal. 1991;17(5):267–272. doi:10.1002/sia.740170508
  • Forbes LM, O_Mahony AM, Sattayasamitsathit S, Wang J, Cha JN. Polymer end-group mediated synthesis of well-defined catalytically active platinum nanoparticles. J Mater Chem. 2011;21(39):15788. doi:10.1039/c1jm13137k
  • Jansen RJJ, van Bekkum H. XPS of nitrogen-containing functional groups on activated carbon. Carbon N Y. 1995;33(8):1021–1027. doi:10.1016/0008-6223(95)00030-H
  • Deniau G, Azoulay L, Jégou P, Le Chevallier G, Palacin S. Carbon-to-metal bonds: electrochemical reduction of 2-butenenitrile. Surf Sci. 2006;600(3):675–684. doi:10.1016/j.susc.2005.11.021
  • Truica-Marasescu F, Wertheimer MR. Nitrogen-rich plasma-polymer films for biomedical applications. Plasma Process Polym. 2008;5(1):44–57. doi:10.1002/ppap.200700077
  • Forbes LM, Sattayasamitsathit S, Xu PF, et al. Improved oxygen reduction reaction activities with amino acid R group functionalized PEG at platinum surfaces. J Mater Chem A. 2013;1(35):10267–10273. doi:10.1039/c3ta12133j
  • Crispin X, Lazzaroni R, Crispin A, Geskin V, Brédas J, Salaneck W. Understanding the initial stages of polymer grafting on metals: a photoelectron spectroscopy study of acrylonitrile adsorption on transition metal surfaces. J Electron Spectros Relat Phenomena. 2001;121(1):57–74. doi:10.1016/S0368-2048(01)00326-7
  • Silverstein RM, Bassler GC, Morrill TC. Spectrometric Identification of Organic Compounds. John Wiley & Sons, Inc.; 1991.
  • Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B: Applications in Coordination, Organometallic and Bioinorganic Chemistry. Sixth ed Hoboken, New Jersey: John Wiley & Sons. Inc; 2009.
  • Wysokiski R, Kuduk-Jaworska J, Michalska D. Electronic structure, Raman and infrared spectra, and vibrational assignment of carboplatin. Density functional theory studies. J Mol Struct Theochem. 2006;758(23):169–179. doi:10.1016/j.theochem.2005.10.032
  • Glastrup J. Degradation of polyethylene glycol. A study of the reaction mechanism in a model molecule: tetraethylene glycol. Polym Degrad Stab. 1996;52(3):217–222. doi:10.1016/0141-3910(95)00225-1
  • Chibani S, Michel C, Delbecq F, Pinel C, Besson M. On the key role of hydroxyl groups in platinum-catalysed alcohol oxidation in aqueous medium. Catal Sci Technol. 2013;3(2):339–350. doi:10.1039/C2CY20363D
  • Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal Today. 1994;19(2):247–283. doi:10.1016/0920-5861(94)80187-8
  • Anderson R, Griffin K, Johnston P, Alsters PL. Selective oxidation of alcohols to carbonyl compounds and carboxylic acids with platinum group metal catalysts. Adv Synth Catal. 2003;345(4):517–523. doi:10.1002/adsc.200390060
  • Cox Gad S. Handbook of Pharmaceutical Biotechnology. Cox GS, ed. John Wiley & Sons. Inc; 2007.
  • Wand P, Bartl JD, Heiz U, Tschurl M, Cokoja M. Functionalization of small platinum nanoparticles with amine and phosphines: ligand binding modes and particle stability. J Colloid Interface Sci. 2016;478:72–80. doi:10.1016/j.jcis.2016.06.00327288572
  • Salado-Leza D, Mendoza-Mendoza E, Castillo-Ramírez JA, Escudero-Lourdes C, García-Cerda LA. A simple approach to room-temperature synthesis of cubic Al-doped HfO2 nanoparticles and their toxicity evaluation in normal prostate cells. Mater Lett. 2020;274:128048. doi:10.1016/j.matlet.2020.128048
  • Barabadi H, Najafi M, Samadian H, et al. A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Med. 2019;55:8.
  • Mortezaee K, Najafi M, Samadian H, Barabadi H, Azarnezhad A, Ahmadi A. Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact. 2019;312((September)):108814. doi:10.1016/j.cbi.2019.10881431509734
  • Jiang H, Goulbourne CN, Tatar A, et al. High-resolution imaging of dietary lipids in cells and tissues by NanoSIMS analysis. J Lipid Res. 2014;55(10):2156–2166. doi:10.1194/jlr.M05336325143463
  • Usami N, Furusawa Y, Kobayashi K, et al. Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int J Radiat Biol. 2008;84(7):603–611. doi:10.1080/0955300080219984618661376
  • Stefanciková L, Porcel E, Eustache P, et al. Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol. 2014;5(1):6. doi:10.1186/s12645-014-0006-625328549
  • Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79(2):531–539. doi:10.1016/j.ijrobp.2010.08.04421095075
  • Shah NB, Dong J, Bischof JC. Cellular uptake and nanoscale localization of gold nanoparticles in cancer using label-free confocal Raman microscopy. Mol Pharm. 2011;8(1):176–184. doi:10.1021/mp100258721053973
  • Romer W, Wu T-D, Duchambon P, et al. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging. Appl Surf Sci. 2006;252:6925–6930. doi:10.1016/j.apsusc.2006.02.183
  • Tubiana M, Dutreix J, Wambersie A. Effects cellulaires des rayonnements ionisants. Les courbes de survie cellulaire In: Hermann, editor. Radiobiologie. Paris: Hermann, éditeurs des sciences et des arts; 1986:73–104.
  • Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 1976;66(2):401–426. doi:10.2307/35744071265229
  • Taggart LE, McMahon SJ, Currell FJ, Prise KM, Butterworth KT. The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol. 2014;5(1):5. doi:10.1186/s12645-014-0005-725243023
  • International Commission on Radiological Protection. Report of the RBE subcommittee to the international commission on radiological protection and the international commission on radiation units and measurements. Health Phys. 1963;9(357386).
  • Porcel E, Li S, Usami N, et al. Nano-Sensitization under gamma rays and fast ion radiation. J Phys Conf Ser. 2012;373:012006. doi:10.1088/1742-6596/373/1/012006
  • Smialek MA, Moore SA, Mason NJ, Shuker DEG. Quantification of radiation-induced single-strand breaks in plasmid DNA using a TUNEL/ELISA-based assay. Radiat Res. 2009;172(5):529–536. doi:10.1667/RR1684.119883220
  • McMahon SJ, Hyland WB, Muir MF, et al. Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol. 2011;100(3):412–416. doi:10.1016/j.radonc.2011.08.02621924786
  • Verkhovtsev AV, Korol AV, Solov’yov AV. Electron production by sensitizing gold nanoparticles irradiated by fast ions. J Phys Chem C. 2015;119(20):11000–11013. doi:10.1021/jp511419n
  • Pesic ZD, Hellhammer R, Sulik B, Stolterfoht N. Strong anisotropy in the proton emission following fragmentation of H 2 O molecules by impact with slow, highly charged Xenon ions. J Phys B at Mol Opt Phys. 2009;42(23):235202. doi:10.1088/0953-4075/42/23/235202
  • Stumpf H. On the theory of electronic processes in ionic crystal semiconductors. Phys Der Kondens Mater. 1971;13(2):101–117.