232
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Antihistamine and Wound Healing Potential of Gold Nanoparticles Synthesized Using Bulbine frutescens (L.) Willd

ORCID Icon, , ORCID Icon, , , , , , , & ORCID Icon show all
Pages 59-76 | Received 31 Oct 2023, Accepted 22 Feb 2024, Published online: 13 Mar 2024

References

  • Brandt EB, Sivaprasad U. Th2 Cytokines and Atopic Dermatitis. J Clin Cell Immunol. 2011;2(3):1–25. doi:10.4172/2155-9899.1000110
  • Sullivan M, Silverberg NB. Current and emerging concepts in atopic dermatitis pathogenesis. Clin Dermatol. 2017;35(4):349–353. doi:10.1016/j.clindermatol.2017.03.006
  • Lee H, Lee S. Epidermal permeability barrier defects and barrier repair therapy in atopic dermatitis. Allergy Asthma Immunol Res. 2014;6(4):276–287. doi:10.4168/aair.2014.6.4.276
  • Palmer CNA, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genet. 2006;38(4):441–446. doi:doi:10.1038/ng1767
  • Brown SJ, McLean WHI. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3):751–762. doi:10.1038/jid.2011.393
  • Voisin T, Chiu IM. Molecular link between itch and atopic dermatitis. Proc Natl Acad Sci. 2018;115(51):12851–12853. doi:10.1073/pnas.1818879115
  • Buddenkotte J, Maurer M, Steinhoff M. Histamine and antihistamines in atopic dermatitis. In: Histamine in Inflammation. Springer; 2010:73–80.
  • Gschwandtner M, Mildner M, Mlitz V, et al. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy. 2013;68(1):37–47. doi:10.1111/all.12051
  • Gutowska‐Owsiak D, Greenwald L, Watson C, Selvakumar T, Wang X, Ogg G. The histamine‐synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin. Br J Dermatol. 2014;171(4):771–778. doi:10.1111/bjd.13199
  • Damiani G, Eggenhöffner R, Pigatto PDM, Bragazzi NL. Nanotechnology meets atopic dermatitis: current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact Mater. 2019;4:380–386. doi:10.1016/j.bioactmat.2019.11.003
  • Abdissa N, Heydenreich M, Midiwo JO, et al. A xanthone and a phenylanthraquinone from the roots of Bulbine frutescens, and the revision of six seco-anthraquinones into xanthones. Phytochem Lett. 2014;9:67–73. doi:doi:10.1016/j.phytol.2014.04.004
  • Hoffman -D-D Snake Flower – Bulbine frutescens. Available from: https://herbclass.com/bulbine-frutescens/. Accessed 28, April, 2020.
  • Harris S Bulbine frutescens. Available from: http://pza.sanbi.org/bulbine-frutescens. Accessed 28, April, 2020.
  • Pather N, Kramer B. Bulbine natalensis and Bulbine frutescens promote cutaneous wound healing. J Ethnopharmacol. 2012;144(3):523–532. doi:10.1016/j.jep.2012.09.034
  • Coopoosamy R. Traditional information and antibacterial activity of four Bulbine species (Wolf). Afr J Biotechnol. 2011;10(2):220–224.
  • Yadwade R, Gharpure S, Ankamwar B. Nanotechnology in cosmetics pros and cons. Nano Express. 2021;2(2):022003. doi:10.1088/2632-959X/abf46b
  • Gupta V, Mohapatra S, Mishra H, et al. Nanotechnology in cosmetics and cosmeceuticals—A review of latest advancements. Gels. 2022;8(3):173. doi:10.3390/gels8030173
  • Akturk O, Kismet K, Yasti AC, et al. Collagen/gold nanoparticle nanocomposites: a potential skin wound healing biomaterial. J Biomater Appl. 2016;31(2):283–301. doi:10.1177/0885328216644536
  • Ikram S. Synthesis of gold nanoparticles using plant extract: an overview. Nano Res. 2015;1(1):5.
  • De Canha MN, Thipe VC, Katti KV, et al. The activity of gold nanoparticles synthesized using Helichrysum odoratissimum against Cutibacterium acnes biofilms. Front Cell Develop Biol. 2021;2288.
  • Lall N, Blom van Staden A, Rademan S, et al. Antityrosinase and anti-acne potential of plants traditionally used in the Jongilanga community in Mpumalanga. S Afr J Bot. 2019;126:241–249. doi:doi:10.1016/j.sajb.2019.07.015
  • Liang -C-C, Park AY, Guan J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–333. doi:10.1038/nprot.2007.30
  • Oosthuizen C, Arbach M, Meyer D, Hamilton C, Lall N. Diallyl polysulfides from Allium sativum as immunomodulators, hepatoprotectors, and antimycobacterial agents. Journal of Medicinal Food. 2017;20(7):685–690. doi:doi:10.1089/jmf.2016.0137
  • Ghuman S, Ncube B, Finnie JF, McGaw LJ, Coopoosamy RM, Van Staden J. Antimicrobial Activity, Phenolic Content, and Cytotoxicity of Medicinal Plant Extracts Used for Treating Dermatological Diseases and Wound Healing in KwaZulu-Natal, South Africa. Original Research. Front Pharmacol. 2016;7. doi:10.3389/fphar.2016.00320.
  • Ye F, Liang Q, Li H, Zhao G. Solvent effects on phenolic content, composition, and antioxidant activity of extracts from florets of sunflower (Helianthus annuus L.). Ind Crops Prod. 2015;76:574–581. doi:doi:10.1016/j.indcrop.2015.07.063
  • Lata K, Arvind K, Laxmana N, Rajan S. Gold nanoparticles: preparation, characterization and its stability in buffer. A J Nanotechnol Applica. 2014;17(1):1–10.
  • Salopek B, Krasic D, Filipovic S. Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik. 1992;4(1):147.
  • Kus-Liśkiewicz M, Fickers P, Ben Tahar I. Biocompatibility and Cytotoxicity of Gold Nanoparticles: recent Advances in Methodologies and Regulations. Int J Mol Sci. 2021;22(20):10952. doi:10.3390/ijms222010952
  • Nguyen TT, Parat M-O, Shaw PN, Hewavitharana AK, Hodson MP. Traditional aboriginal preparation alters the chemical profile of Carica papaya leaves and impacts on cytotoxicity towards human squamous cell carcinoma. PLoS One. 2016;11(2).
  • Ying T-H, Chen C-W, Hsiao Y-P, Hung S-J, Chung J-G, Yang J-H. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase-and mitochondrial-dependent signaling pathways. Anticancer Res. 2013;33(10):4411–4420.
  • Nel M, van Staden AB, Twilley D, et al. Potential of succulents for eczema-associated symptoms. S Afr J Bot. 2022;147:1105–1111. doi:10.1016/j.sajb.2022.03.030
  • Jurek I, Szuplewska A, Chudy M, Wojciechowski K. Effect of the oat, horse chestnut, cowherb, soy, quinoa and soapwort extracts on skin‐mimicking monolayers and cell lines. J Surfactants Deterg. 2022;25(2):185–192. doi:10.1002/jsde.12553
  • Hutchings A. Zulu Medicinal Plants: An Inventory. University of Natal press; 1996.
  • Pather N, Viljoen AM, Kramer B. A biochemical comparison of the in vivo effects of Bulbine frutescens and Bulbine natalensis on cutaneous wound healing. J Ethnopharmacol. 2011;133(2):364–370. doi:10.1016/j.jep.2010.10.007
  • Habtemariam S. Antioxidant activity of Knipholone anthrone. Food Chem. 2007;102(4):1042–1047. doi:10.1016/j.foodchem.2006.06.040
  • Prisa D. Effective Microorganisms Improve Growth and Minerals Content in the Medicinal Plant Bulbine frutescens. Indian J Nat Sci. 2022;12(70):37763–37770.
  • Wang G, Yang F, Zhou W, Xiao N, Luo M, Tang Z. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed Pharmacother. 2023;157:114004. doi:doi:10.1016/j.biopha.2022.114004
  • Tambama P, Abegaz B, Mukanganyama S. Antiproliferative activity of the isofuranonaphthoquinone isolated from Bulbine frutescens against Jurkat T cells. Biomed Res Int. 2014;2014:1–14. doi:doi:10.1155/2014/752941
  • Pierson PD, Fettes A, Freichel C, et al. 5-Hydroxyindole-2-carboxylic Acid Amides: novel Histamine-3 Receptor Inverse Agonists for the Treatment of Obesity. J Med Chem. 2009;52(13):3855–3868. doi:10.1021/jm900409x
  • Kubota K, Kurebayashi H, Miyachi H, Tobe M, Onishi M, Isobe Y. Synthesis and structure–activity relationships of phenothiazine carboxylic acids having pyrimidine-dione as novel histamine H1 antagonists. Bioorg Med Chem Lett. 2009;19(10):2766–2771. doi:10.1016/j.bmcl.2009.03.124