361
Views
6
CrossRef citations to date
0
Altmetric
Review

Current Insights into Optimal Lighting for Promoting Sleep and Circadian Health: Brighter Days and the Importance of Sunlight in the Built Environment

ORCID Icon
Pages 25-39 | Published online: 06 Jan 2022

References

  • Hafker NS, Tessmar-Raible K. Rhythms of behavior: are the times changin’? Curr Opin Neurobiol. 2020;60:55–66. doi:10.1016/j.conb.2019.10.005
  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–179. doi:10.1038/nrg.2016.150
  • Roenneberg T, Foster RG. Twilight times: light and the circadian system. Photochem Photobiol. 1997;66(5):549–561. doi:10.1111/j.1751-1097.1997.tb03188.x
  • Kreitzman L, Foster R. Rhythms of Life: The Biological Clocks That Control the Daily Lives of Every Living Thing. Profile Books; 2011.
  • Ludtke LE. Sleep, disruption and the ‘nightmare of total illumination’ in late nineteenth and early twentieth-century dystopian fiction. Interface Focus. 2020;10(3):20190130. doi:10.1098/rsfs.2019.0130
  • Lockley S, Foster R. Sleep: A Very Short Introduction. Oxford University Press; 2012.
  • Willich AFM. Lectures on Diet and Regimen. Longman, Hurst, Rees&Orme; 1800
  • Phillips AJK, Vidafar P, Burns AC, et al. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc Natl Acad Sci U S A. 2019;116(24):12019–12024. doi:10.1073/pnas.1901824116
  • Cain SW, McGlashan EM, Vidafar P, et al. Evening home lighting adversely impacts the circadian system and sleep. Sci Rep. 2020;10(1):19110. doi:10.1038/s41598-020-75622-4
  • Chang AM, Scheer FA, Czeisler CA. The human circadian system adapts to prior photic history. J Physiol. 2011;589(Pt 5):1095–1102. doi:10.1113/jphysiol.2010.201194
  • Gradisar M, Wolfson AR, Harvey AG, Hale L, Rosenberg R, Czeisler CA. The sleep and technology use of Americans: findings from the National Sleep Foundation’s 2011 Sleep in America poll. J Clin Sleep Med. 2013;9(12):1291–1299. doi:10.5664/jcsm.3272
  • Lunn RM, Blask DE, Coogan AN, et al. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ. 2017;607–608:1073–1084. doi:10.1016/j.scitotenv.2017.07.056
  • Soler R, Voss E. Biologically Relevant Lighting: an Industry Perspective. Front Neurosci. 2021;15:637221. doi:10.3389/fnins.2021.637221
  • Vetter C, Phillips AJK, Silva A, Lockley SW, Glickman G. Light Me up? Why, When, and How Much Light We Need. J Biol Rhythms. 2019;34(6):573–575. doi:10.1177/0748730419892111
  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–1073. doi:10.1126/science.1067262
  • Dacey DM, Liao HW, Peterson BB, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433(7027):749–754. doi:10.1038/nature03387
  • Bailes HJ, Lucas RJ. Human melanopsin forms a pigment maximally sensitive to blue light (lambda max approximately 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proc Biol Sci. 2013;280(1759):20122987. doi:10.1098/rspb.2012.2987
  • Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: biophysics to Behavior. Neuron. 2019;104(2):205–226. doi:10.1016/j.neuron.2019.07.016
  • Spitschan M. Melanopsin contributions to non-visual and visual function. Curr Opin Behav Sci. 2019;30:67–72. doi:10.1016/j.cobeha.2019.06.004
  • Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol. 2021;12:636330. doi:10.3389/fneur.2021.636330
  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–1070. doi:10.1126/science.1069609
  • Li JY, Schmidt TM. Divergent projection patterns of M1 ipRGC subtypes. J Comp Neurol. 2018;526(13):2010–2018. doi:10.1002/cne.24469
  • Rupp AC, Ren M, Altimus CM, et al. Distinct ipRGC subpopulations mediate light’s acute and circadian effects on body temperature and sleep. Elife. 2019:8. doi:10.7554/eLife.44358
  • Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci. 2021;78(3):889–907. doi:10.1007/s00018-020-03641-5
  • Kim KY, Rios LC, Le H, et al. Synaptic Specializations of Melanopsin-Retinal Ganglion Cells in Multiple Brain Regions Revealed by Genetic Label for Light and Electron Microscopy. Cell Rep. 2019;29(3):628–644 e6. doi:10.1016/j.celrep.2019.09.006
  • Stinchcombe AR, Hu C, Walch OJ, Faught SD, Wong KY, Forger DB. M1-Type, but Not M4-Type, Melanopsin Ganglion Cells Are Physiologically Tuned to the Central Circadian Clock. Front Neurosci. 2021;15:652996. doi:10.3389/fnins.2021.652996
  • Mouland JW, Martial FP, Lucas RJ, Brown TM. Modulations in irradiance directed at melanopsin, but not cone photoreceptors, reliably alter electrophysiological activity in the suprachiasmatic nucleus and circadian behaviour in mice. J Pineal Res. 2021;70(4):e12735. doi:10.1111/jpi.12735
  • Dannerfjord AA, Brown LA, Foster RG, Peirson SN. Light Input to the Mammalian Circadian Clock. Methods Mol Biol. 2021;2130:233–247. doi:10.1007/978-1-0716-0381-9_18
  • Zaidi FH, Hull JT, Peirson SN, et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol. 2007;17(24):2122–2128. doi:10.1016/j.cub.2007.11.034
  • Gooley JJ, Rajaratnam SM, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med. 2010;2(31):31ra33. doi:10.1126/scitranslmed.3000741
  • Wright HR, Lack LC. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol Int. 2001;18(5):801–808. doi:10.1081/cbi-100107515
  • Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405–6412. doi:10.1523/JNEUROSCI.21-16-06405.2001
  • Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535(Pt 1):261–267. doi:10.1111/j.1469-7793.2001.t01-1-00261.x
  • Brainard GC, Hanifin JP, Warfield B, et al. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. J Pineal Res. 2015;58(3):352–361. doi:10.1111/jpi.12221
  • Prayag AS, Najjar RP, Gronfier C. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans. J Pineal Res. 2019;66(4):e12562. doi:10.1111/jpi.12562
  • Spitschan M, Lazar R, Yetik E, Cajochen C. No evidence for an S cone contribution to acute neuroendocrine and alerting responses to light. Curr Biol. 2019;29(24):R1297–R1298. doi:10.1016/j.cub.2019.11.031
  • Rahman SA, Flynn-Evans EE, Aeschbach D, Brainard GC, Czeisler CA, Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. Sleep. 2014;37(2):271–281. doi:10.5665/sleep.3396
  • Nowozin C, Wahnschaffe A, Rodenbeck A, et al. Applying Melanopic Lux to Measure Biological Light Effects on Melatonin Suppression and Subjective Sleepiness. Curr Alzheimer Res. 2017;14(10):1042–1052. doi:10.2174/1567205014666170523094526
  • Czeisler CA, Shanahan TL, Klerman EB, et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995;332(1):6–11. doi:10.1056/NEJM199501053320102
  • Lucas RJ, Foster RG. Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin. Endocrinology. 1999;140(4):1520–1524. doi:10.1210/endo.140.4.6672
  • Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284(5413):505–507. doi:10.1126/science.284.5413.505
  • Freedman MS, Lucas RJ, Soni B, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999;284(5413):502–504. doi:10.1126/science.284.5413.502
  • Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424(6944):76–81. doi:10.1038/nature01761
  • Guler AD, Altimus CM, Ecker JL, Hattar S. Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells. Cold Spring Harb Symp Quant Biol. 2007;72:509–515. doi:10.1101/sqb.2007.72.074
  • Guler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008;453(7191):102–105. doi:10.1038/nature06829
  • Wong KY, Dunn FA, Graham DM, Berson DM. Synaptic influences on rat ganglion-cell photoreceptors. J Physiol. 2007;582(Pt 1):279–296. doi:10.1113/jphysiol.2007.133751
  • Lee SK, Sonoda T, Schmidt TM. M1 Intrinsically Photosensitive Retinal Ganglion Cells Integrate Rod and Melanopsin Inputs to Signal in Low Light. Cell Rep. 2019;29(11):3349–3355e2. doi:10.1016/j.celrep.2019.11.024
  • Gooley JJ, Ho Mien I, St Hilaire MA, et al. Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans. J Neurosci. 2012;32(41):3219–3253. doi:10.3390/ijerph17093219
  • Joyce DS, Feigl B, Cao D, Zele AJ. Temporal characteristics of melanopsin inputs to the human pupil light reflex. Vision Res. 2015;107:58–66. doi:10.1016/j.visres.2014.12.001
  • Walmsley L, Hanna L, Mouland J, et al. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol. 2015;13(4):e1002127. doi:10.1371/journal.pbio.1002127
  • van Diepen HC, Schoonderwoerd RA, Ramkisoensing A, Janse JAM, Hattar S, Meijer JH. Distinct contribution of cone photoreceptor subtypes to the mammalian biological clock. Proc Natl Acad Sci U S A. 2021;118(22):e2024500118. doi:10.1073/pnas.2024500118
  • Wong KY, Fernandez FX. Circadian Responses to Light-Flash Exposure: conceptualization and New Data Guiding Future Directions. Front Neurol. 2021;12:627550. doi:10.3389/fneur.2021.627550
  • Yetish G, Kaplan H, Gurven M, et al. Natural sleep and its seasonal variations in three pre-industrial societies. Curr Biol. 2015;25(21):2862–2868. doi:10.1016/j.cub.2015.09.046
  • Pilz LK, Levandovski R, Oliveira MAB, Hidalgo MP, Roenneberg T. Sleep and light exposure across different levels of urbanisation in Brazilian communities. Sci Rep. 2018;8(1):11389. doi:10.1038/s41598-018-29494-4
  • Moreno CR, Vasconcelos S, Marqueze EC, et al. Sleep patterns in Amazon rubber tappers with and without electric light at home. Sci Rep. 2015;5:14074. doi:10.1038/srep14074
  • Samson DR, Manus MB, Krystal AD, Fakir E, Yu JJ, Nunn CL. Segmented sleep in a nonelectric, small-scale agricultural society in Madagascar. Am J Hum Biol. 2017;29(4). doi:10.1002/ajhb.22979
  • Peixoto CA, Da Silva AG, Carskadon MA, Louzada FM. Adolescents living in homes without electric lighting have earlier sleep times. Behav Sleep Med. 2009;7(2):73–80. doi:10.1080/15402000902762311
  • Wright KP Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED, Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol. 2013;23:16. 1554–1558. doi:10.1016/j.cub.2013.06.039
  • de la Iglesia HO, Fernandez-Duque E, Golombek DA, et al. Access to Electric Light Is Associated with Shorter Sleep Duration in a Traditionally Hunter-Gatherer Community. J Biol Rhythms. 2015;30(4):342–350. doi:10.1177/0748730415590702
  • Beale AD, Pedrazzoli M, Goncalves B, et al. Comparison between an African town and a neighbouring village shows delayed, but not decreased, sleep during the early stages of urbanisation. Sci Rep. 2017;7(1):5697. doi:10.1038/s41598-017-05712-3
  • Kloog I, Haim A, Stevens RG, Barchana M, Portnov BA. Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol Int. 2008;25(1):65–81. doi:10.1080/07420520801921572
  • Falchi F, Cinzano P, Elvidge CD, Keith DM, Haim A. Limiting the impact of light pollution on human health, environment and stellar visibility. J Environ Manage. 2011;92(10):2714–2722. doi:10.1016/j.jenvman.2011.06.029
  • de Miguel AS, Zamorano J, Castaño JG, Pascual S. Evolution of the energy consumed by street lighting in Spain estimated with DMSP-OLS data. J Quant Spectrosc Radiat Transf. 2013;139:109–117. doi:10.1016/j.jqsrt.2013.11.017
  • Elvidge CD, Baugh KE, Zhizhin M, Hsu F-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc Asia Pacific Adv Network. 2013;35:62–69. doi:10.7125/APAN.35.7
  • Lane KJ, Stokes EC, Seto KC, Thanikachalam S, Thanikachalam M, Bell ML. Associations between Greenness, Impervious Surface Area, and Nighttime Lights on Biomarkers of Vascular Aging in Chennai, India. Environ Health Perspect. 2017;125(8):087003. doi:10.1289/EHP541
  • de Miguel AS, Castaño JG, Zamorano J, et al. Atlas of astronaut photos of earth at night. Astron Geophys. 2014;55:436. doi:10.1093/astrogeo/atu165
  • Katz Y, Levin N. Quantifying urban light pollution—a comparison between field measurements and EROS-B imagery. Remote Sens Environ. 2016;177:65–77. doi:10.1016/j.rse.2016.02.017
  • Falchi F, Cinzano P, Duriscoe D, et al. The new world atlas of artificial night sky brightness. Sci Adv. 2016;2(6):e1600377. doi:10.1126/sciadv.1600377
  • Kyba CCM, Kuester T, Sanchez de Miguel A, et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci Adv. 2017;3(11):e1701528. doi:10.1126/sciadv.1701528
  • Ohayon MM, Milesi C. Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population. Sleep. 2016;39(6):1311–1320. doi:10.5665/sleep.5860
  • Paksarian D, Rudolph KE, Stapp EK, et al. Association of Outdoor Artificial Light at Night With Mental Disorders and Sleep Patterns Among US Adolescents. JAMA Psychiatry. 2020;77(12):1266–1275. doi:10.1001/jamapsychiatry.2020.1935
  • Min JY, Min KB. Outdoor light at night and the prevalence of depressive symptoms and suicidal behaviors: a cross-sectional study in a nationally representative sample of Korean adults. J Affect Disord. 2018;227:199–205. doi:10.1016/j.jad.2017.10.039
  • Rybnikova NA, Haim A, Portnov BA. Does artificial light-at-night exposure contribute to the worldwide obesity pandemic? Int J Obes. 2016;40(5):815–823. doi:10.1038/ijo.2015.255
  • James P, Bertrand KA, Hart JE, Schernhammer ES, Tamimi RM, Laden F. Outdoor Light at Night and Breast Cancer Incidence in the Nurses’ Health Study II. Environ Health Perspect. 2017;125(8):087010. doi:10.1289/EHP935
  • Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin. 2014;64(3):207–218. doi:10.3322/caac.21218
  • Stevens RG, Rea MS. Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. Cancer Causes Control. 2001;12(3):279–287. doi:10.1023/a:1011237000609
  • Blask DE, Brainard GC, Dauchy RT, et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res. 2005;65(23):11174–11184. doi:10.1158/0008-5472.CAN-05-1945
  • Bedrosian TA, Fonken LK, Walton JC, Haim A, Nelson RJ. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology. 2011;36(7):1062–1069. doi:10.1016/j.psyneuen.2011.01.004
  • Bedrosian TA, Fonken LK, Nelson RJ. Endocrine Effects of Circadian Disruption. Annu Rev Physiol. 2016;78:109–131. doi:10.1146/annurev-physiol-021115-105102
  • Russart KLG, Nelson RJ. Light at night as an environmental endocrine disruptor. Physiol Behav. 2018;190:82–89. doi:10.1016/j.physbeh.2017.08.029
  • Fonken LK, Bedrosian TA, Zhang N, Weil ZM, DeVries AC, Nelson RJ. Dim light at night impairs recovery from global cerebral ischemia. Exp Neurol. 2019;317:100–109. doi:10.1016/j.expneurol.2019.02.008
  • Cajochen C, Frey S, Anders D, et al. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol. 2011;110(5):1432–1438. doi:10.1152/japplphysiol.00165.2011
  • Gooley JJ, Chamberlain K, Smith KA, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463–72. doi:10.1210/jc.2010-2098
  • Chellappa SL, Steiner R, Oelhafen P, et al. Acute exposure to evening blue-enriched light impacts on human sleep. J Sleep Res. 2013;22(5):573–580. doi:10.1111/jsr.12050
  • Cho JR, Joo EY, Koo DL, Hong SB. Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms. Sleep Med. 2013;14(12):1422–1425. doi:10.1016/j.sleep.2013.09.007
  • Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A. 2015;112(4):1232–1237. doi:10.1073/pnas.1418490112
  • Cho CH, Lee HJ, Yoon HK, et al. Exposure to dim artificial light at night increases REM sleep and awakenings in humans. Chronobiol Int. 2016;33(1):117–123. doi:10.3109/07420528.2015.1108980
  • Hysing M, Pallesen S, Stormark KM, Jakobsen R, Lundervold AJ, Sivertsen B. Sleep and use of electronic devices in adolescence: results from a large population-based study. BMJ Open. 2015;5(1):e006748. doi:10.1136/bmjopen-2014-006748
  • Straif K, Baan R, Grosse Y, et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007;8(12):1065–1066. doi:10.1016/S1470-2045(07)70373-X
  • Erren TC, Morfeld P, Gross JV, Wild U, Lewis P. IARC 2019: ”Night shift work” is probably carcinogenic: what about disturbed chronobiology in all walks of life? J Occup Med Toxicol. 2019;14:29. doi:10.1186/s12995-019-0249-6
  • Nelson RJ. Seasonal immune function and sickness responses. Trends Immunol. 2004;25(4):187–192. doi:10.1016/j.it.2004.02.001
  • Irwin M, McClintick J, Costlow C, Fortner M, White J, Gillin JC. Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. FASEB J. 1996;10(5):643–653. doi:10.1096/fasebj.10.5.8621064
  • Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Adverse health effects of nighttime lighting: comments on American Medical Association policy statement. Am J Prev Med. 2013;45(3):343–346. doi:10.1016/j.amepre.2013.04.011
  • Erren TC, Lewis P. Towards standard assessments of sleep as an exposure: an initiative for an important research area. Sleep Med. 2021;88:187–188. doi:10.1016/j.sleep.2021.10.001
  • Crowley SJ, Cain SW, Burns AC, Acebo C, Carskadon MA. Increased Sensitivity of the Circadian System to Light in Early/Mid-Puberty. J Clin Endocrinol Metab. 2015;100(11):4067–4073. doi:10.1210/jc.2015-2775
  • Lee SI, Matsumori K, Nishimura K, et al. Melatonin suppression and sleepiness in children exposed to blue-enriched white LED lighting at night. Physiol Rep. 2018;6(24):e13942. doi:10.14814/phy2.13942
  • Nagare R, Plitnick B, Figueiro MG. Effect of exposure duration and light spectra on nighttime melatonin suppression in adolescents and adults. Light Res Technol. 2019;51(4):530–543. doi:10.1177/1477153518763003
  • Higuchi S, Nagafuchi Y, Lee SI, Harada T. Influence of light at night on melatonin suppression in children. J Clin Endocrinol Metab. 2014;99(9):3298–3303. doi:10.1210/jc.2014-1629
  • Akacem LD, Wright KP Jr, LeBourgeois MK. Sensitivity of the circadian system to evening bright light in preschool-age children. Physiol Rep. 2018;6(5):e13617. doi:10.14814/phy2.13617
  • Weale RA. Human lenticular fluorescence and transmissivity, and their effects on vision. Exp Eye Res. 1985;41(4):457–473. doi:10.1016/s0014-4835(85)80004-x
  • Yang Y, Thompson K, Burns SA. Pupil location under mesopic, photopic, and pharmacologically dilated conditions. Invest Ophthalmol Vis Sci. 2002;43(7):2508–2512.
  • Charman WN. Age, lens transmittance, and the possible effects of light on melatonin suppression. Ophthalmic Physiol Opt. 2003;23(2):181–187. doi:10.1046/j.1475-1313.2003.00105.x
  • Gringras P, Middleton B, Skene DJ, Revell VL. Bigger, Brighter, Bluer-Better? Current Light-Emitting Devices - Adverse Sleep Properties and Preventative Strategies. Front Public Health. 2015;3:233. doi:10.3389/fpubh.2015.00233
  • Exelmans L, Van den Bulck J. Technology and Sleep: how Electronic Media Exposure Has Impacted Core Concepts of Sleep Medicine. Behav Sleep Med. 2015;13(6):439–441. doi:10.1080/15402002.2015.1083025
  • Carter B, Rees P, Hale L, Bhattacharjee D, Paradkar MS. Association Between Portable Screen-Based Media Device Access or Use and Sleep Outcomes: a Systematic Review and Meta-analysis. JAMA Pediatr. 2016;170(12):1202–1208. doi:10.1001/jamapediatrics.2016.2341
  • Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):40–43. doi:10.1016/j.sleh.2014.12.010
  • Chang AM, Scheer FA, Czeisler CA, Aeschbach D. Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history. Sleep. 2013;36(8):1239–1246. doi:10.5665/sleep.2894
  • Rahman SA, St Hilaire MA, Lockley SW. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep. Physiol Behav. 2017;177:221–229. doi:10.1016/j.physbeh.2017.05.002
  • Chellappa SL, Ly JQ, Meyer C, et al. Photic memory for executive brain responses. Proc Natl Acad Sci U S A. 2014;111(16):6087–6091. doi:10.1073/pnas.1320005111
  • Hebert M, Martin SK, Lee C, Eastman CI. The effects of prior light history on the suppression of melatonin by light in humans. J Pineal Res. 2002;33(4):198–203. doi:10.1034/j.1600-079x.2002.01885.x
  • Kozaki T, Kubokawa A, Taketomi R, Hatae K. Effects of day-time exposure to different light intensities on light-induced melatonin suppression at night. J Physiol Anthropol. 2015;34:27. doi:10.1186/s40101-015-0067-1
  • Zeitzer JM, Friedman L, Yesavage JA. Effectiveness of evening phototherapy for insomnia is reduced by bright daytime light exposure. Sleep Med. 2011;12(8):805–807. doi:10.1016/j.sleep.2011.02.005
  • Carrier J, Dumont M. Sleep propensity and sleep architecture after bright light exposure at three different times of day. J Sleep Res. 1995;4(4):202–211. doi:10.1111/j.1365-2869.1995.tb00171.x
  • Ancoli-Israel S, Gehrman P, Martin JL, et al. Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav Sleep Med. 2003;1(1):22–36. doi:10.1207/S15402010BSM0101_4
  • Viola AU, James LM, Schlangen LJ, Dijk DJ. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand J Work Environ Health. 2008;34(4):297–306. doi:10.5271/sjweh.1268
  • Figueiro MG, Rea MS. Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in middle school students. Neuro Endocrinol Lett. 2010;31(1):92–96.
  • Kozaki T, Miura N, Takahashi M, Yasukouchi A. Effect of reduced illumination on insomnia in office workers. J Occup Health. 2012;54(4):331–335. doi:10.1539/joh.12-0049-fs
  • Najjar RP, Wolf L, Taillard J, et al. Chronic artificial blue-enriched white light is an effective countermeasure to delayed circadian phase and neurobehavioral decrements. PLoS One. 2014;9(7):e102827. doi:10.1371/journal.pone.0102827
  • Figueiro MG, Steverson B, Heerwagen J, et al. The impact of daytime light exposures on sleep and mood in office workers. Sleep Health. 2017;3(3):204–215. doi:10.1016/j.sleh.2017.03.005
  • Gimenez MC, Geerdinck LM, Versteylen M, et al. Patient room lighting influences on sleep, appraisal and mood in hospitalized people. J Sleep Res. 2017;26(2):236–246. doi:10.1111/jsr.12470
  • Wams EJ, Woelders T, Marring I, et al. Linking Light Exposure and Subsequent Sleep: a Field Polysomnography Study in Humans. Sleep. 2017;40(12). doi:10.1093/sleep/zsx165
  • Cajochen C, Reichert C, Maire M, et al. Evidence That Homeostatic Sleep Regulation Depends on Ambient Lighting Conditions during Wakefulness. Clocks Sleep. 2019;1(4):517–531. doi:10.3390/clockssleep1040040
  • Cajochen C, Freyburger M, Basishvili T, et al. Effect of daylight LED on visual comfort, melatonin, mood, waking performance and sleep. Lighting Res Technol. 2019;51:1044–1062. doi:10.1177/1477153519828419
  • Te Kulve M, Schlangen LJM, van Marken Lichtenbelt WD. Early evening light mitigates sleep compromising physiological and alerting responses to subsequent late evening light. Sci Rep. 2019;9(1):16064. doi:10.1038/s41598-019-52352-w
  • Juda M, Liu-Ambrose T, Feldman F, Suvagau C, Mistlberger RE. Light in the Senior Home: effects of Dynamic and Individual Light Exposure on Sleep, Cognition, and Well-Being. Clocks Sleep. 2020;2(4):557–576. doi:10.3390/clockssleep2040040
  • Stefani O, Freyburger M, Veitz S, et al. Changing color and intensity of LED lighting across the day impacts on circadian melatonin rhythms and sleep in healthy men. J Pineal Res. 2021;70(3):e12714. doi:10.1111/jpi.12714
  • Kawasaki A, Wisniewski S, Healey B, et al. Impact of long-term daylight deprivation on retinal light sensitivity, circadian rhythms and sleep during the Antarctic winter. Sci Rep. 2018;8(1):16185. doi:10.1038/s41598-018-33450-7
  • Owen J, Arendt J. Melatonin suppression in human subjects by bright and dim light in Antarctica: time and season-dependent effects. Neurosci Lett. 1992;137(2):181–184. doi:10.1016/0304-3940(92)90399-r
  • Rea MS, Figueiro MG, Bierman A, Bullough JD. Circadian light. J Circadian Rhythms. 2010;8(1):2. doi:10.1186/1740-3391-8-2
  • Schlangen LJM, Price LLA. The Lighting Environment, Its Metrology, and Non-visual Responses. Front Neurol. 2021;12:624861. doi:10.3389/fneur.2021.624861
  • Spitschan M, Mead J, Roos C, et al. luox: novel validated open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res. 2021;6:69. doi:10.12688/wellcomeopenres.16595.2
  • Lucas RJ, Peirson SN, Berson DM, et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014;37(1):1–9. doi:10.1016/j.tins.2013.10.004
  • Vetter C, Pattison PM, Houser K, et al. A Review of Human Physiological Responses to Light: implications for the Development of Integrative Lighting Solutions. LEUKOS;2021. 1–28. doi:10.1080/15502724.2021.1872383
  • Pattison PM, Tsao JY, Brainard GC, Bugbee B. LEDs for photons, physiology and food. Nature. 2018;563(7732):493–500. doi:10.1038/s41586-018-0706-x
  • Sachs G. The low carbon economy: technology in the driver’s seat. Goldman Sachs Equity Res. 2016.
  • Sachs G. The low carbon economy. Goldman Sachs Equity Res. 2015.
  • Bauer M, Glenn T, Monteith S, et al. The potential influence of LED lighting on mental illness. World J Biol Psychiatry. 2018;19(1):59–73. doi:10.1080/15622975.2017.1417639
  • Houser KW, Esposito T. Human-Centric Lighting: foundational Considerations and a Five-Step Design Process. Front Neurol. 2021;12:630553. doi:10.3389/fneur.2021.630553
  • Spitschan M, Garbazza C, Kohl S, Cajochen C. Sleep and circadian phenotype in people without cone-mediated vision: a case series of five CNGB3 and two CNGA3 patients. Brain Commun. 2021;3(3):fcab159. doi:10.1093/braincomms/fcab159
  • Munch M, Wirz-Justice A, Brown SA, et al. The Role of Daylight for Humans: gaps in Current Knowledge. Clocks Sleep. 2020;2(1):61–85. doi:10.3390/clockssleep2010008
  • Kuller R, Lindsten C. Health and behavior of children in classrooms with and without windows. J Environ Psychol. 1992;12:305–317. doi:10.1016/S0272-4944(05)80079-9
  • Grant LK, Kent BA, Mayer MD, Stickgold R, Lockley SW, Rahman SA. Daytime Exposure to Short Wavelength-Enriched Light Improves Cognitive Performance in Sleep-Restricted College-Aged Adults. Front Neurol. 2021;12:624217. doi:10.3389/fneur.2021.624217
  • Boubekri M, Lee J, MacNaughton P, et al. The Impact of Optimized Daylight and Views on the Sleep Duration and Cognitive Performance of Office Workers. Int J Environ Res Public Health. 2020;17(9). doi:10.3390/ijerph17093219
  • Boubekri M, Cheung IN, Reid KJ, Wang CH, Zee PC. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J Clin Sleep Med. 2014;10(6):603–611. doi:10.5664/jcsm.3780
  • Burns AC, Saxena R, Vetter C, Phillips AJK, Lane JM, Cain SW. Time spent in outdoor light is associated with mood, sleep, and circadian rhythm-related outcomes: a cross-sectional and longitudinal study in over 400,000 UK Biobank participants. J Affect Disord. 2021;295:347–352. doi:10.1016/j.jad.2021.08.056
  • Roecklein KA, Rohan KJ, Duncan WC, et al. A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affect Disord. 2009;114(1–3):279–285. doi:10.1016/j.jad.2008.08.005
  • Roecklein KA, Wong PM, Franzen PL, et al. Melanopsin gene variations interact with season to predict sleep onset and chronotype. Chronobiol Int. 2012;29(8):1036–1047. doi:10.3109/07420528.2012.706766
  • Wirz-Justice A, Skene DJ, Munch M. The relevance of daylight for humans. Biochem Pharmacol. 2021;191:114304. doi:10.1016/j.bcp.2020.114304
  • Jukic AMZ, Hoofnagle AN, Lutsey PL. Measurement of Vitamin D for Epidemiologic and Clinical Research: shining Light on a Complex Decision. Am J Epidemiol. 2018;187(4):879–890. doi:10.1093/aje/kwx297
  • Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19(2):73–78. doi:10.1016/j.annepidem.2007.12.001
  • Naeem Z. Vitamin d deficiency- an ignored epidemic. Int J Health Sci. 2010;4(1):V–VI.
  • Lowdon J. Rickets: concerns over the worldwide increase. J Fam Health Care. 2011;21(2):25–29.
  • Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. doi:10.1016/j.ophtha.2016.01.006
  • Spillmann L. Stopping the rise of myopia in Asia. Graefes Arch Clin Exp Ophthalmol. 2020;258(5):943–959. doi:10.1007/s00417-019-04555-0
  • Lam CS, Lam CH, Cheng SC, Chan LY. Prevalence of myopia among Hong Kong Chinese schoolchildren: changes over two decades. Ophthalmic Physiol Opt. 2012;32(1):17–24. doi:10.1111/j.1475-1313.2011.00886.x
  • Hobday R. Myopia and daylight in schools: a neglected aspect of public health? Perspect Public Health. 2016;136(1):50–55. doi:10.1177/1757913915576679
  • Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–1285. doi:10.1016/j.ophtha.2007.12.019
  • Lingham G, Mackey DA, Lucas R, Yazar S. How does spending time outdoors protect against myopia? A review. Br J Ophthalmol. 2020;104(5):593–599. doi:10.1136/bjophthalmol-2019-314675
  • Lagrèze WA, Schaeffel F. Preventing Myopia. Dtsch Arztebl Int. 2017;114:575–580. doi:10.3238/arztebl.2017.0575
  • Bronin SC. Solar Rights. Boston Univ Law Rev. 2009;89:1217–1265.
  • Reitze GL. A solar rights zoning guarantee: seeking new law in old concepts. Washington Univ Law Quarterly. 1976;1976(3):375–402.
  • Aronson BE. Review essay: environmental law in Japan. Harvard Envion Law Rev. 1983;7:135.
  • Šprah N, Košir M. Daylight provision requirements according to EN 17037 as a restriction for sustainable urban planning of residential developments. Sustainability. 2020;12:315. doi:10.3390/su12010315
  • Boubekri M. A overview of the current state of daylight legislation. J Human Environ Sys. 2004;7:57–63. doi:10.1618/jhes.7.57
  • Hobday RA. Sunlight therapy and solar architecture. Med Hist. 1997;41(4):455–472. doi:10.1017/s0025727300063043
  • Boubekri M, Shishegar N, Khama TR. Sustainability with Health in Mind: a Case for Daylighting. Int J Constructed Environ. 2016;8:1–13. doi:10.18848/2154-8587/CGP/v08i02/1-13
  • Lee J, Boubekri M, Liang F. Impact of building design parameters on daylighting metrics using an analysis, prediction, and optimization approach based on statistical learning technique. Sustainability. 2019;11:1474. doi:10.3390/su11051474
  • Blume C, Garbazza C, Spitschan M. Effects of light on human circadian rhythms, sleep and mood. Somnologie. 2019;23(3):147–156. doi:10.1007/s11818-019-00215-x