210
Views
1
CrossRef citations to date
0
Altmetric
Study Protocol

Closed-Loop Acoustic Stimulation During Sedation with Dexmedetomidine (CLASS-D): Protocol for a Within-Subject, Crossover, Controlled, Interventional Trial with Healthy Volunteers

ORCID Icon, , , ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 303-313 | Published online: 04 Mar 2021

References

  • Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology (Bethesda). 2017;32(1):60–92. doi:10.1152/physiol.00062.2015
  • Leger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: from the cell to the clinic. Sleep Med Rev. 2018;41:113–132.
  • Neske GT. The slow oscillation in cortical and thalamic networks: mechanisms and functions. Front Neural Circuits. 2015;9:88. doi:10.3389/fncir.2015.00088
  • Greene RW, Frank MG. Slow wave activity during sleep: functional and therapeutic implications. Neuroscientist. 2010;16(6):618–633. doi:10.1177/1073858410377064
  • Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.
  • Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–613. doi:10.1038/nature05278
  • Massimini M, Ferrarelli F, Esser SK, et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci U S A. 2007;104(20):8496–8501. doi:10.1073/pnas.0702495104
  • Ngo HV, Martinetz T, Born J, Molle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013;78(3):545–553. doi:10.1016/j.neuron.2013.03.006
  • Garcia-Molina G, Tsoneva T, Jasko J, et al. Closed-loop system to enhance slow-wave activity. J Neural Eng. 2018;15(6):066018. doi:10.1088/1741-2552/aae18f
  • Besedovsky L, Ngo HV, Dimitrov S, Gassenmaier C, Lehmann R, Born J. Auditory closed-loop stimulation of EEG slow oscillations strengthens sleep and signs of its immune-supportive function. Nat Commun. 2017;8(1):1984. doi:10.1038/s41467-017-02170-3
  • Leminen MM, Virkkala J, Saure E, et al. Enhanced memory consolidation via automatic sound stimulation during non-REM sleep. Sleep. 2017;40(3). doi:10.1093/sleep/zsx003.
  • Papalambros NA, Santostasi G, Malkani RG, et al. Acoustic enhancement of sleep slow oscillations and concomitant memory improvement in older adults. Front Hum Neurosci. 2017;11:109. doi:10.3389/fnhum.2017.00109
  • Grimaldi D, Papalambros NA, Reid KJ, et al. Strengthening sleep-autonomic interaction via acoustic enhancement of slow oscillations. Sleep. 2019;42. Doi:10.1093/sleep/zsz036
  • Schreglmann SR, Wang D, Peach RL, et al. Non-invasive suppression of essential tremor via phase-locked disruption of its temporal coherence. Nat Commun. 2021;12(1):363. doi:10.1038/s41467-020-20581-7
  • Debellemaniere E, Chambon S, Pinaud C, et al. Performance of an ambulatory dry-EEG device for auditory closed-loop stimulation of sleep slow oscillations in the home environment. Front Hum Neurosci. 2018;12:88. doi:10.3389/fnhum.2018.00088
  • Bellesi M, Riedner BA, Garcia-Molina GN, Cirelli C, Tononi G. Enhancement of sleep slow waves: underlying mechanisms and practical consequences. Front Syst Neurosci. 2014;8:208. doi:10.3389/fnsys.2014.00208
  • Akeju O, Hobbs LE, Gao L, et al. Dexmedetomidine promotes biomimetic non-rapid eye movement stage 3 sleep in humans: a pilot study. Clin Neurophysiol. 2018;129(1):69–78. doi:10.1016/j.clinph.2017.10.005
  • Brown EN, Lydic R, Schiff ND, Schwartz RS. General anesthesia, sleep, and coma. N Engl J Med. 2010;363(27):2638–2650. doi:10.1056/NEJMra0808281
  • Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: part I: background and basic signatures. Anesthesiology. 2015;123(4):937–960. doi:10.1097/ALN.0000000000000841
  • Akeju O, Kim SE, Vazquez R, et al. Spatiotemporal dynamics of dexmedetomidine-induced electroencephalogram oscillations. PLoS One. 2016;11(10):e0163431. doi:10.1371/journal.pone.0163431
  • Xi C, Sun S, Pan C, Ji F, Cui X, Li T. Different effects of propofol and dexmedetomidine sedation on electroencephalogram patterns: wakefulness, moderate sedation, deep sedation and recovery. PLoS One. 2018;13(6):e0199120. doi:10.1371/journal.pone.0199120
  • Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–394. doi:10.1097/00000542-200008000-00016
  • Sleigh JW, Vacas S, Flexman AM, Talke PO. Electroencephalographic arousal patterns under dexmedetomidine sedation. Anesth Analg. 2018;127(4):951–959. doi:10.1213/ANE.0000000000003590
  • Scheinin A, Kallionpaa RE, Li D, et al. Differentiating drug-related and state-related effects of dexmedetomidine and propofol on the electroencephalogram. Anesthesiology. 2018;129(1):22–36. doi:10.1097/ALN.0000000000002192
  • Guldenmund P, Vanhaudenhuyse A, Sanders RD, et al. Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br J Anaesth. 2017;119(4):674–684. doi:10.1093/bja/aex257
  • Ni Mhuircheartaigh R, Warnaby C, Rogers R, Jbabdi S, Tracey I. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med. 2013;5(208):208ra148. doi:10.1126/scitranslmed.3006007
  • Schmid W, Marhofer P, Opfermann P, et al. Brainwave entrainment to minimise sedative drug doses in paediatric surgery: a randomised controlled trial. Br J Anaesth. 2020;125:330–335. doi:10.1016/j.bja.2020.05.050
  • Connor CW, Forensic A. Disassembly of the BIS monitor. Anesth Analg. 2020;131(6):1923–1933. doi:10.1213/ANE.0000000000005220
  • Sigl JC, Chamoun NG. An introduction to bispectral analysis for the electroencephalogram. J Clin Monit. 1994;10(6):392–404. doi:10.1007/BF01618421
  • Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123(3):231–243. doi:10.1016/j.pain.2006.01.041
  • Arnal PJ, Thorey V, Ballard ME, et al. The Dreem headband as an alternative to polysomnography for EEG signal acquisition and sleep staging. BioRxiv. 2019;662734.
  • Andrillon T, Solelhac G, Bouchequet P, et al. Revisiting the value of polysomnographic data in insomnia: more than meets the eye. Sleep Med. 2020;66:184–200. doi:10.1016/j.sleep.2019.12.002
  • Hannivoort LN, Eleveld DJ, Proost JH, et al. Development of an optimized pharmacokinetic model of dexmedetomidine using target-controlled infusion in healthy volunteers. Anesthesiology. 2015;123(2):357–367. doi:10.1097/ALN.0000000000000740
  • Colin PJ, Hannivoort LN, Eleveld DJ, et al. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br J Anaesth. 2017;119(2):211–220. doi:10.1093/bja/aex086
  • Colin PJ, Hannivoort LN, Eleveld DJ, et al. Dexmedetomidine pharmacokinetic-pharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation. Br J Anaesth. 2017;119(2):200–210. doi:10.1093/bja/aex085
  • Weerink MAS, Struys M, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913. doi:10.1007/s40262-017-0507-7
  • Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC. Quantification of sleepiness: a new approach. Psychophysiology. 1973;10(4):431–436. doi:10.1111/j.1469-8986.1973.tb00801.x
  • Pandya AN, Majid SZ, Desai MS. The origins, evolution, and spread of anesthesia monitoring standards: from Boston to across the world. Anesth Analg. 2020. doi:10.1213/ANE.0000000000005021
  • Prerau MJ, Hartnack KE, Obregon-Henao G, et al. Tracking the sleep onset process: an empirical model of behavioral and physiological dynamics. PLoS Comput Biol. 2014;10(10):e1003866. doi:10.1371/journal.pcbi.1003866
  • Guay CS, Plourde G. Handgrip dynamometry for continuous assessment of volitional control during induction of anesthesia: a prospective observational study. Can J Anaesth. 2019;66(1):48–56. doi:10.1007/s12630-018-1224-x
  • Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013;110(12):E1142–1151. doi:10.1073/pnas.1221180110
  • Purdon PL, Colvin CA, Brown EN EEG for anesthesia. International Anesthesia Research Society; 2019. Available from: http://eegforanesthesia.iars.org/. Accessed February 19, 2021.
  • Molle M, Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res. 2011;193:93–110.
  • Talke P, Anderson BJ. Pharmacokinetics and pharmacodynamics of dexmedetomidine-induced vasoconstriction in healthy volunteers. Br J Clin Pharmacol. 2018;84(6):1364–1372. doi:10.1111/bcp.13571
  • Aldrete JA. The post-anesthesia recovery score revisited. J Clin Anesth. 1995;7(1):89–91. doi:10.1016/0952-8180(94)00001-K
  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716. doi:10.1155/2011/879716
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. doi:10.1016/j.jneumeth.2003.10.009
  • Scholkmann F, Bens J, Wolf M. An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms. 2012;5:588–603. doi:10.3390/a5040588
  • Riedner BA, Vyazovskiy VV, Huber R, et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–1657. doi:10.1093/sleep/30.12.1643
  • Palanca BJ, Mitra A, Larson-Prior L, Snyder AZ, Avidan MS, Raichle ME. Resting-state functional magnetic resonance imaging correlates of sevoflurane-induced unconsciousness. Anesthesiology. 2015;123:346–356. doi:10.1097/ALN.0000000000000731
  • Palanca BJA, Maybrier HR, Mickle AM, et al. Cognitive and neurophysiological recovery following electroconvulsive therapy: a study protocol. Front Psychiatry. 2018;9:171. doi:10.3389/fpsyt.2018.00171
  • Maier KL, McKinstry-Wu AR, Palanca BJ, et al. Protocol for the reconstructing human consciousness and cognition study. Front Hum Neurosci. 2017. doi:10.3389/fnhum.2017.00284
  • Ong JL, Lo JC, Chee NI, et al. Effects of phase-locked acoustic stimulation during a nap on EEG spectra and declarative memory consolidation. Sleep Med. 2016;20:88–97. doi:10.1016/j.sleep.2015.10.016
  • Casagrande JT, Pike MC, Smith PG. An improved approximate formula for calculating sample sizes for comparing two binomial distributions. Biometrics. 1978;34(3):483–486. doi:10.2307/2530613
  • Wunderlin M, Zust MA, Hertenstein E, et al. Modulating overnight memory consolidation by acoustic stimulation during slow wave sleep - a systematic review and meta-analysis. Sleep. 2021. doi:10.1093/sleep/zsaa296
  • Chan AW, Tetzlaff JM, Gotzsche PC, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.
  • Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207. doi:10.7326/0003-4819-158-3-201302050-00583