269
Views
3
CrossRef citations to date
0
Altmetric
Review

Roles of Exosomes and Exosomal MicroRNAs in Postoperative Sleep Disturbance

&
Pages 1363-1375 | Published online: 30 Jul 2021

References

  • Gögenur I, Wildschiøtz G, Rosenberg J. Circadian distribution of sleep phases after major abdominal surgery. Br J Anaesth. 2008;100(1):45–49. doi:10.1093/bja/aem340
  • Rampes S, Katie M, Divecha YA, et al. Postoperative sleep disorders and their potential impacts on surgical outcomes. J Biomed Res. 2019;34(4):271–280. doi:10.7555/JBR.33.20190054
  • Sipilä RM, Kalso EA. Sleep well and recover faster with less pain-a narrative review on sleep in the perioperative period. J Clin Med. 2021;10(9):2000. doi:10.3390/jcm10092000
  • Chung F, Liao P, Yegneswaran B, Shapiro CM, Kang W. Postoperative changes in sleep-disordered breathing and sleep architecture in patients with obstructive sleep apnea. Anesthesiology. 2014;120(2):287–298. doi:10.1097/ALN.0000000000000040
  • Shokri-Kojori E, Wang G-J, Wiers CE, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A. 2018;115(17):4483–4488. doi:10.1073/pnas.1721694115
  • Bah TM, Goodman J, Iliff JJ. Sleep as a therapeutic target in the aging brain. Neurotherapeutics. 2019;16(3):554–568. doi:10.1007/s13311-019-00769-6
  • Su X, Wang D-X. Improve postoperative sleep: what can we do? Curr Opin Anaesthesiol. 2018;31(1):83–88. doi:10.1097/ACO.0000000000000538
  • Cai Z-Y, Xiao M, Quazi SH. Exosomes: a novel therapeutic target for Alzheimer’s disease? Neural Regen Res. 2018;13(5):930–935. doi:10.4103/1673-5374.232490
  • Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3. doi:10.3402/jev.v3.23743.
  • Goetzl EJ, Kapogiannis D, Schwartz JB, et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J. 2016;30(12):4141–4148. doi:10.1096/fj.201600816R
  • Goetzl EJ, Boxer A, Schwartz JB, et al. Altered lysosomal proteins in neural derived plasma exosomes in preclinical Alzheimer disease. Neurology. 2015;85(1):40–47. doi:10.1212/WNL.0000000000001702
  • Szmyd B, Rogut M, Białasiewicz P, et al. The impact of glucocorticoids and statins on sleep quality. Sleep Med Rev. 2021;55:101380. doi:10.1016/j.smrv.2020.101380
  • Gabryelska A, Szmyd B, Maschauer EL, et al. Utility of measuring CSF hypocretin-1 level in patients with suspected narcolepsy. Sleep Med. 2020;71:48–51. doi:10.1016/j.sleep.2020.03.009
  • McNamara P, Johnson P, McLaren D, et al. REM and NREM sleep mentation. Int Rev Neurobiol. 2010;92:69–86. doi:10.1016/S0074-7742(10)92004-7
  • Berry RB, Brooks R, Gamaldo C, et al. AASM Scoring Manual Updates for 2017 (Version 2.4). J Clin Sleep Med. 2017;13(5):665–666. doi:10.5664/jcsm.6576
  • Van Dongen HPA, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26(2):117–126. doi:10.1093/sleep/26.2.117
  • Karabulut S, Bayramov KK, Bayramov R, et al. Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice. Behav Brain Res. 2019;361:7–13. doi:10.1016/j.bbr.2018.12.045
  • Sochal M, Małecka-Panas E, Gabryelska A, et al. Brain-derived neurotrophic factor is elevated in the blood serum of Crohn’s disease patients, but is not influenced by anti-TNF-α treatment-a pilot study. Neurogastroenterol Motil. 2020;e13978. doi:10.1111/nmo.13978
  • Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi:10.1126/scitranslmed.3003748
  • Xie L, Kang H, Qiwu X, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi:10.1126/science.1241224
  • Chung F, Liao P, Elsaid H, et al. Factors associated with postoperative exacerbation of sleep-disordered breathing. Anesthesiology. 2014;120(2):299–311. doi:10.1097/ALN.0000000000000041
  • Dette F, Cassel W, Urban F, et al. Occurrence of rapid eye movement sleep deprivation after surgery under regional anesthesia. Anesth Analg. 2013;116(4):939–943. doi:10.1213/ANE.0b013e3182860e58
  • Kjølhede P, Langström P, Nilsson P, et al. The impact of quality of sleep on recovery from fast-track abdominal hysterectomy. J Clin Sleep Med. 2012;8(4):395–402. doi:10.5664/jcsm.2032
  • Kessler R, Knutson KL, Mokhlesi B, et al. Sleep and activity patterns in older patients discharged from the hospital. Sleep. 2019;42(11):zsz153. doi:10.1093/sleep/zsz153
  • Alessi CA, Martin JL, Webber AP, et al. Randomized, controlled trial of a nonpharmacological intervention to improve abnormal sleep/wake patterns in nursing home residents. J Am Geriatr Soc. 2005;53(5):803–810. doi:10.1111/j.1532-5415.2005.53251.x
  • Krenk L, Jennum P, Kehlet H. Postoperative sleep disturbances after zolpidem treatment in fast-track hip and knee replacement. J Clin Sleep Med. 2014;10(3):321–326. doi:10.5664/jcsm.3540
  • Musiek ES. Circadian clock disruption in neurodegenerative diseases: cause and effect? Front Pharmacol. 2015;6:29. doi:10.3389/fphar.2015.00029
  • Vecchierin M-F. Sleep disturbances in Alzheimer’s disease and other dementias. Psychol Neuropsychiatr Vieil. 2010;8(1):15–23. doi:10.1684/pnv.2010.0203
  • Henry A, Katsoulis M, Masi S, et al. The relationship between sleep duration, cognition and dementia: a Mendelian randomization study. Int J Epidemiol. 2019;48(3):849–860. doi:10.1093/ije/dyz071
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):37383. doi:10.1083/jcb.201211138
  • Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi:10.1038/ncb1596
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. doi:10.1126/science.aau6977
  • Dutkowska A, Szmyd B, Kaszkowiak M, et al. Expression of inflammatory interleukins and selected miRNAs in non-small cell lung cancer. Sci Rep. 2021;11(1):5092. doi:10.1038/s41598-021-84408-1
  • Czarneck KH, Szmyd B, Barańska M, et al. A strong decrease in TIMP3 expression mediated by the presence of miR-17 and 20a enables extracellular matrix remodeling in the NSCLC lesion surroundings. Front Oncol. 2019;9:1372. doi:10.3389/fonc.2019.01372
  • Zhang L, Shan X, Wang J, et al. A three-microRNA signature for lung squamous cell carcinoma diagnosis in Chinese male patients. Oncotarget. 2017;8(49):86897–86907. doi:10.18632/oncotarget.19666
  • Molina-Pinelo S, Dolores Pastor M, Suarez R, et al. MicroRNA clusters: dysregulation in lung adenocarcinoma and COPD. Eur Respir J. 2014;43(6):1740–1749. doi:10.1183/09031936.00091513
  • Aushev VN, Zborovskaya IB, Laktionov KK, et al. Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One. 2013;8(10):e78649. doi:10.1371/journal.pone.0078649
  • Khalyfa A, Poroyko VA, Qiao Z, et al. Exosomes and metabolic function in mice exposed to alternating dark-light cycles mimicking night shift work schedules. Front Physiol. 2017;8:882. doi:10.3389/fphys.2017.00882
  • Lee M-J, Park D-H, Kang J-H. Exosomes as the source of biomarkers of metabolic diseases. Ann Pediatr Endocrinol Metab. 2016;21(3):119–125. doi:10.6065/apem.2016.21.3.119
  • Gabryelska A, Karuga FF, Szmyd B, Białasiewicz P. HIF-1α as a mediator of insulin resistance, T2DM, and its complications: potential links with obstructive sleep apnea. Front Physiol. 2020;11:1035. doi:10.3389/fphys.2020.01035
  • Gabryelska A, Szmyd B, Szemraj J, et al. Patients with obstructive sleep apnea present with chronic upregulation of serum HIF-1α protein. J Clin Sleep Med. 2020;16(10):1761–1768. doi:10.5664/jcsm.8682
  • Gabryelska A, Szmyd B, Panek M, et al. Serum hypoxia-inducible factor-1α protein level as a diagnostic marker of obstructive sleep apnea. Pol Arch Intern Med. 2020;130(2):158–160. doi:10.20452/pamw.15104
  • Gabryelska A, Sochal M, Turkiewicz S, et al. Relationship between HIF-1 and circadian clock proteins in obstructive sleep apnea patients-preliminary study. J Clin Med. 2020;9(5):1599. doi:10.3390/jcm9051599
  • Rajendran L, Honsho M, Zahn TR, et al. Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 2006;103(30):11172–11177. doi:10.1073/pnas.0603838103
  • Dinkins MB, Dasgupta S, Wang G, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging. 2014;35(8):1792–1800. doi:10.1016/j.neurobiolaging.2014.02.012
  • Perez-Gonzalez R, Gauthier SA, et al. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012;287(51):43108–43115. doi:10.1074/jbc.M112.404467
  • Kyongman A, Klyubin I, Kim Y, et al. Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo. Mol Brain. 2013;6:47. doi:10.1186/1756-6606-6-47
  • Kang J-E, Lim MM, Bateman RJ, et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326(5955):1005–1007. doi:10.1126/science.1180962
  • Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J Neurochem. 2017;140(4):536–549. doi:10.1111/jnc.13932
  • Bu X-L, Liu Y-H, Wang Q-H, et al. Serum amyloid-beta levels are increased in patients with obstructive sleep apnea syndrome. Sci Rep. 2015;5:13917. doi:10.1038/srep13917
  • Xie J-C, Ma X-Y, Liu X-H, et al. Hypoxia increases amyloid-β level in exosomes by enhancing the interaction between CD147 and Hook1. Am J Transl Res. 2018;10(1):150–163.
  • Zhou S, Zhou H, Walian PJ, Jap BK. The discovery and role of CD147 as a subunit of gamma-secretase complex. Drug News Perspect. 2006;19(3):133–138. doi:10.1358/dnp.2006.19.3.985932
  • Cui G-H, Jing W, Mou F-F, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J. 2018;32(2):654–668. doi:10.1096/fj.201700600R
  • Brier MR, Gordon B, Friedrichsen K, et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med. 2016;8(338):338ra66. doi:10.1126/scitranslmed.aaf2362
  • Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019;363(6429):880–884. doi:10.1126/science.aav2546
  • Wang Y, Balaji V, Kaniyappan S, et al. The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener. 2017;12(1):5. doi:10.1186/s13024-016-0143-y
  • Saman S, Lee NCY, Inoyo I, et al. Proteins recruited to exosomes by tau overexpression implicate novel cellular mechanisms linking tau secretion with Alzheimer’s disease. J Alzheimers Dis. 2014;40(Suppl 1):S47–70. doi:10.3233/JAD-132135
  • Plouffe V, Mohamed N-V, Rivest-McGraw J, et al. Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS One. 2012;7(5):e36873. doi:10.1371/journal.pone.0036873
  • Barthélemy NR, Liu H, William L, et al. Sleep deprivation affects tau phosphorylation in human cerebrospinal fluid. Ann Neurol. 2020;87(5):700–709. doi:10.1002/ana.25702
  • Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–1596. doi:10.1038/nm.3407
  • Kress GJ, Liao F, Dimitry J, et al. Regulation of amyloid-beta dynamics and pathology by the circadian clock. J Exp Med. 2018;215(4):1059–1068. doi:10.1084/jem.20172347
  • Scott Miners J, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. J Cereb Blood Flow Metab. 2018;38(1):103–115. doi:10.1177/0271678X17690761
  • Wan W, Chen H, Yaming L. The potential mechanisms of Aβ-receptor for advanced glycation end-products interaction disrupting tight junctions of the blood-brain barrier in Alzheimer’s disease. Int J Neurosci. 2014;124(2):75–81. doi:10.3109/00207454.2013.825258
  • Cai Z, Qiao P-F, Wan C-Q, et al. Role of blood-brain barrier in Alzheimer’s Disease. J Alzheimers Dis. 2018;63(4):1223–1234. doi:10.3233/JAD-180098
  • Amanda B, Anika CP, Hartz MS, et al. New evidence for P-gp-mediated export of Amyloid-β PEPTIDES in molecular, blood-brain barrier and neuronal models. Int J Mol Sci. 2020;22(1):246. doi:10.3390/ijms22010246
  • Pan J, Ruyi H, Huo Q, et al. Brain microvascular endothelial cell derived exosomes potently ameliorate cognitive dysfunction by enhancing the clearance of Aβ through up-regulation of P-gp in mouse model of AD. Neurochem Res. 2020;45(9):2161–2172. doi:10.1007/s11064-020-03076-1
  • Junyun H, Hsuchou H, He Y, et al. Sleep restriction impairs blood–brain barrier function. J Neurosci. 2014;34(44):14697–14706. doi:10.1523/JNEUROSCI.2111-14.2014
  • Khalyfa A, Gozal D, Kheirandish-Gozal. L. Plasma extracellular vesicles in children with OSA disrupt blood-brain barrier integrity and endothelial cell wound healing in vitro. Int J Mol Sci. 2019;20(24):6233. doi:10.3390/ijms20246233
  • Khalyfa A, Kheirandish-Gozal L, Khalyfa AA, et al. Circulating plasma extracellular microvesicle MicroRNA cargo and endothelial dysfunction in children with obstructive sleep apnea. Am J Respir Crit Care Med. 2016;194(9):1116–1126. doi:10.1164/rccm.201602-0323OC
  • Saliminejad K, Reza H, Khorshid K, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. doi:10.1002/jcp.27486
  • Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20(1):5–20. doi:10.1038/s41580-018-0059-1
  • Kim J, Inoue K, Ishii J, et al. MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317(5842):1220–1224. doi:10.1126/science.1140481
  • Davis TH, Cuellar TL, Koch SM, et al. Conditional loss of dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci. 2008;28(17):4322–4330. doi:10.1523/JNEUROSCI.4815-07.2008
  • Xin H, Wang F, Yanfeng L, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from MicroRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 2017;26(2):243–257. doi:10.3727/096368916X693031
  • Lee C, Alex Mitsialis S, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601–2611. doi:10.1161/CIRCULATIONAHA.112.114173
  • Rodriguez-Vieitez E, Nielsen HM. Associations between APOE variants, Tau and α-Synuclein. Adv Exp Med Biol. 2019;1184:177–186. doi:10.1007/978-981-32-9358-8_15
  • Kumar S, Hemachandra Reddy P. Are circulating microRNAs peripheral biomarkers for Alzheimer’s disease? Biochim Biophys Acta. 2016;1862(9):1617–1627. doi:10.1016/j.bbadis.2016.06.001
  • Samadian M, Gholipour M, Hajiesmaeili M, et al. The eminent role of microRNAs in the pathogenesis of Alzheimer’s Disease. Front Aging Neurosci. 2021;13:641080. doi:10.3389/fnagi.2021.641080
  • Sun L-H, Ban T, Liu C-D, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. J Neurochem. 2015;134(6):1139–1151. doi:10.1111/jnc.13212
  • Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476. doi:10.3389/fncel.2015.00476
  • Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53(2):1181–1194. doi:10.1007/s12035-014-9070-5
  • Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–991. doi:10.1038/nn.4338
  • Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013;9(1):25–34. doi:10.1038/nrneurol.2012.236
  • Giacobbo BL, Doorduin J, Klein HC, et al. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 2019;56(5):3295–3312. doi:10.1007/s12035-018-1283-6
  • Wadhwa M, Prabhakar A, et al. Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J Neuroinflammation. 2017;14(1):222. doi:10.1186/s12974-017-0998–z
  • Kang Y-C, Zhang L, Ying S, et al. MicroRNA-26b regulates the microglial inflammatory response in hypoxia/ischemia and affects the development of vascular cognitive impairment. Front Cell Neurosci. 2018;12:154. doi:10.3389/fncel.2018.00154
  • Mosakhani N, Sarhadi V, Panula P, et al. Narcolepsy patients’ blood-based miRNA expression profiling: miRNAexpression differences with Pandemrix vaccination. Acta Neurol Scand. 2017;136(5):462–469. doi:10.1111/ane.12749
  • Mishra PK, Tyagi N, Kundu S, Tyagi SC. MicroRNAs are involved in homocysteine-induced cardiac remodeling. Cell Biochem Biophys. 2009;55(3):153–162. doi:10.1007/s12013-009-9063-6
  • Lee K, Kim J-H, Kwon O-B, et al. An activity-regulated microRNA, miR-188, controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2. J Neurosci. 2012;32(16):5678–5687. doi:10.1523/JNEUROSCI.6471-11.2012
  • Ni Junjun, Zhou W, Meng J, et al. An impaired intrinsic microglial clocksystem induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain. J Neuroinflammation. 2019;16(1):173. doi:10.1186/s12974-019-1562-9
  • Rahmani F, Rezaei N. Therapeutic targeting of Toll-like receptors: a review of Toll-like receptors and their signaling pathways in psoriasis. Expert Rev Clin Immunol. 2016;12(12):1289–1298. doi:10.1080/1744666X.2016.1204232
  • Surbhi, Borniger JC, Russart KLG, et al. miR-155 deletion modulates lipopolysaccharide-induced sleep in female mice. Chronobiol Int. 2019;36(2):188–202. doi:10.1080/07420528.2018.1525617
  • Nakano M, Kubota K, Kobayashi E, et al. Bone marrow‑derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA‑146a in hippocampus. Sci Rep. 2020;10(1):10772. doi:10.1038/s41598-020-67460-1
  • Chen Y-C, Hsu P-Y, Su M-C, et al. miR-21-5p under-expression in patients with obstructive sleep apnea modulates intermittent hypoxia with re-oxygenation-induced-cell apoptosis and cytotoxicity by targeting pro-inflammatory TNF-α-TLR4 signaling. Int J Mol Sci. 2020;21(3):999. doi:10.3390/ijms21030999
  • Du P, Wang J, Han Y, Feng J. Blocking the LncRNA MALAT1/miR-224-5p/NLRP3 axis inhibits the hippocampal inflammatory response in T2DM with OSA. Front Cell Neurosci. 2020;14:97. doi:10.3389/fncel.2020.00097
  • Fang C, Qian L, Min G, et al. MicroRNA-181c ameliorates cognitive impairment induced by chronic cerebral hypoperfusion in rats. Mol Neurobiol. 2017;54(10):8370–8385. doi:10.1007/s12035-016-0268-6
  • Rosa E, Fahnestock M. CREB expression mediates amyloid β-induced basal BDNF downregulation. Neurobiol Aging. 2015;36(8):2406–2413. doi:10.1016/j.neurobiolaging.2015.04.014
  • Salta E, De Strooper B. microRNA-132: a key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB J. 2017;31(2):424–433. doi:10.1096/fj.201601308
  • Nan X, Ang-Di L, Li-Li J, et al. miR-132 regulates the expression of synaptic proteins in APP/PS1 transgenic mice through C1q. Eur J Histochem. 2019;63(2):3008. doi:10.4081/ejh.2019.3008
  • Fiore R, Khudayberdiev S, Christensen M, et al. Mef2-mediated transcription of the miR379–410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 2009;28(6):697–710. doi:10.1038/emboj.2009.10
  • Yamakuchi M. MicroRNA regulation of SIRT1. Front Physiol. 2012;3:68. doi:10.3389/fphys.2012.00068
  • Riancho J, Luis J, Vázquez-Higuera, et al. MicroRNA profile in patients with Alzheimer’s Disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J Alzheimers Dis. 2017;57(2):483–491. doi:10.3233/JAD-161179
  • Zhao H, Yunjun L, Chen L, et al. HucMSCs-derived miR-206-knockdown exosomes contribute to neuroprotection in subarachnoid hemorrhage induced early brain injury by targeting BDNF. Neuroscience. 2019;417:11–23. doi:10.1016/j.neuroscience.2019.07.051
  • Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res. 2017;95(4):943–972. doi:10.1002/jnr.23777
  • Brayet P, Petit D, Baril A-A, et al. Brain perfusion during rapid -eye-movement sleep successfully identifies amnestic mild cognitive impairment. Sleep Med. 2017;34:134–140. doi:10.1016/j.sleep.2017.01.025
  • Hampel H, Vassar R, De Strooper B. The β-Secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89(8):745–756. doi:10.1016/j.biopsych.2020.02.001
  • Zhang X, Huang X, Fang C, et al. miR-124 regulates the expression of BACE1 in the hippocampus under chronic cerebral hypoperfusion. Mol Neurobiol. 2017;54(4):2498–2506. doi:10.1007/s12035-016-9845-y
  • Sun JA-H, Che H, Zhang R, et al. MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J Neurosci. 2013;33(9):3989–4001. doi:10.1523/JNEUROSCI.1997-12.2013
  • Wang Y, Sun B, Zhao X, et al. Twist1-related miR-26b-5p suppresses epithelial-mesenchymal transition, migration and invasion by targeting SMAD1 in hepatocellular carcinoma. Oncotarget. 2016;7(17):24383–24401. doi:10.18632/oncotarget.8328
  • Maiese K. Moving to the rhythm with Clock (Circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr. Neurovasc Res. 2017;14(3):299–304. doi:10.2174/1567202614666170718092010
  • Gao H, Han Z, Huang S, et al. Intermittent hypoxia caused cognitive dysfunction relate to miRNAs dysregulation in hippocampus. Behav Brain Res. 2017;335:80–87. doi:10.1016/j.bbr.2017.06.025
  • Li L, Chen H-Z, Chen -F-F, et al. Global microRNA expression profiling reveals differential expression of target genes in 6-hydroxydopamine-injured MN9D cells. Neuromolecular Med. 2013;15(3):593–604. doi:10.1007/s12017-013-8244-z
  • Ren H, Qiu W, Qiuyun L, et al. Potential contribution of microRNA-125b targeting p38MAPK to relieving intermittent hypoxia-induced dementia of rat models. J Clin Neurosci. 2019;64:234–241. doi:10.1016/j.jocn.2019.03.002
  • Zhou Y, Wang Z-F, Wei L, et al. Protective effects of microRNA-330 on amyloid β-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J Cell Biochem. 2018;119(7):5437–5448. doi:10.1002/jcb.26700
  • Jinlei L, Ogrodnik M, Kolachalama VB, et al. Assessment of the mid-life demographic and lifestyle risk factors of dementia using data from the Framingham heart study offspring cohort. J Alzheimers Dis. 2018;63(3):1119–1127. doi:10.3233/JAD-170917
  • Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms. Rev Neurosci. 2018;29(2):161–182. doi:10.1515/revneuro-2017-0042
  • Slota JA, Booth SA. MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications. Noncoding RNA. 2019;5(2):35. doi:10.3390/ncrna5020035
  • Cui G-H, Guo H-D, Han L, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun Ageing. 2019;16:10. doi:10.1186/s12979-019-0150-2
  • Duan L, Limei X, Xiao X, et al. Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale. 2021;13(3):1387–1397. doi:10.1039/d0nr07622h
  • Fowler CD. NeuroEVs:: Characterizing extracellular vesicles generated in the neural domain. J Neurosci. 2019;39(47):9262–9268. doi:10.1523/JNEUROSCI.0146-18.2019