171
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Dissociation of Subjective and Objective Alertness During Prolonged Wakefulness

, , & ORCID Icon
Pages 923-932 | Published online: 28 Jun 2021

References

  • Killgore WD. Effects of sleep deprivation on cognition. Prog Brain Res. 2010;185:105–129.
  • Zhou X, Ferguson SA, Matthews RW, et al. Sleep, wake and phase dependent changes in neurobehavioral function under forced desynchrony. Sleep. 2011;34(7):931–941. doi:10.5665/SLEEP.1130
  • Kaida K, Takahashi M, Akerstedt T, et al. Validation of the Karolinska sleepiness scale against performance and EEG variables. Clin Neurophysiol. 2006;117(7):1574–1581. doi:10.1016/j.clinph.2006.03.011
  • MacLean AW, Fekken GC, Saskin P, Knowles JB. Psychometric evaluation of the Stanford sleepiness scale. J Sleep Res. 1992;1(1):35–39. doi:10.1111/j.1365-2869.1992.tb00006.x
  • Miley AA, Kecklund G, Akerstedt T. Comparing two versions of the Karolinska Sleepiness Scale (KSS). Sleep Biol Rhythms. 2016;14(3):257–260. doi:10.1007/s41105-016-0048-8
  • Basner M, Dinges DF. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep. 2011;34(5):581–591. doi:10.1093/sleep/34.5.581
  • Li Y, Vgontzas A, Kritikou I, et al. Psychomotor vigilance test and its association with daytime sleepiness and inflammation in sleep apnea: clinical implications. J Clin Sleep Med. 2017;13(9):1049–1056. doi:10.5664/jcsm.6720
  • Cajochen C, Chellappa S, Schmidt C. What ketif us awake?—the role of clocks and hourglasses, light, and melatonin. Int Rev Neurobiol. 2010;93(93):57–90.
  • Carrier J, Monk TH. Circadian rhythms of performance: new trends. Chronobiol Int. 2000;17(6):719–732. doi:10.1081/CBI-100102108
  • Satterfield BC, Wisor JP, Schmidt MA, Van Dongen HPA. Time-on-task effect during sleep deprivation in healthy young adults is modulated by dopamine transporter genotype. Sleep. 2017;40(12). doi:10.1093/sleep/zsx167
  • Veksler BZ, Gunzelmann G. Functional equivalence of sleep loss and time on task effects in sustained attention. Cogn Sci. 2018;42(2):600–632. doi:10.1111/cogs.12489
  • Cajochen C, Blatter K, Wallach D. Circadian and sleep-wake dependent impact on neurobehavioral function. Psychol Belg. 2004;44(1–2):59–80. doi:10.5334/pb.1017
  • Chua EC, Tan WQ, Yeo SC, et al. Heart rate variability can be used to estimate sleepiness-related decrements in psychomotor vigilance during total sleep deprivation. Sleep. 2012;35(3):325–334. doi:10.5665/sleep.1688
  • Leproult R, Colecchia EF, Berardi AM, Stickgold R, Kosslyn SM, Van Cauter E. Individual differences in subjective and objective alertness during sleep deprivation are stable and unrelated. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R280–R290. doi:10.1152/ajpregu.00197.2002
  • Paech GM, Banks S, Pajcin M, et al. Caffeine administration at night during extended wakefulness effectively mitigates performance impairment but not subjective assessments of fatigue and sleepiness. Pharmacol Biochem Behav. 2016;145:27–32. doi:10.1016/j.pbb.2016.03.011
  • Kanayama N, Sato A, Ohira H. Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology. 2007;44(3):392–402. doi:10.1111/j.1469-8986.2007.00511.x
  • Posada-Quintero HF, Reljin N, Bolkhovsky JB, Orjuela-Canon AD, Chon KH. Brain activity correlates with cognitive performance deterioration during sleep deprivation. Front Neurosci. 2019;13:1001. doi:10.3389/fnins.2019.01001
  • Johnson BK. Physiology of the autonomic nervous system. In: Farag E, Argalious M, Tetzlaff J, Sharma D, editors. Basic Sciences in Anesthesia. Cham: Springer; 2018:355–364.
  • Hibi M, Kubota C, Mizuno T, et al. Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial. Sci Rep. 2017;7(1):39640. doi:10.1038/srep39640
  • Szymusiak R. Body temperature and sleep. Handb Clin Neurol. 2018;156:341–351.
  • Te Lindert BHW, Van Someren EJW. Skin temperature, sleep, and vigilance. Handb Clin Neurol. 2018;156:353–365.
  • Vaara J, Kyrolainen H, Koivu M, Tulppo M, Finni T. The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature. Eur J Appl Physiol. 2009;105(3):439–444. doi:10.1007/s00421-008-0921-5
  • Schwartz WJ, Klerman EB. Circadian neurobiology and the physiologic regulation of sleep and wakefulness. Neurol Clin. 2019;37(3):475–486. doi:10.1016/j.ncl.2019.03.001
  • Zhong X, Hilton HJ, Gates GJ, et al. Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J Appl Physiol. 2005;98(6):2024–2032. doi:10.1152/japplphysiol.00620.2004
  • Meier-Ewert HK, Ridker PM, Rifai N, et al. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol. 2004;43(4):678–683. doi:10.1016/j.jacc.2003.07.050
  • Yang H, Haack M, Gautam S, Meier-Ewert HK, Mullington JM. Repetitive exposure to shortened sleep leads to blunted sleep-associated blood pressure dipping. J Hypertens. 2017;35(6):1187–1194. doi:10.1097/HJH.0000000000001284
  • Zoccoli G, Amici R. Sleep and autonomic nervous system. Curr Opion Physiol. 2020;15:128–133. doi:10.1016/j.cophys.2020.01.002
  • Goel N. Neurobehavioral effects and biomarkers of sleep loss in healthy adults. Curr Neurol Neurosci Rep. 2017;17(11):89. doi:10.1007/s11910-017-0799-x
  • Wright KP, Hull JT, Czeisler CA. Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol. 2002;283(6):R1370–1377. doi:10.1152/ajpregu.00205.2002
  • Molzof HE, Prapanjaroensin A, Patel VH, Mokashi MV, Gamble KL, Patrician PA. Misaligned core body temperature rhythms impact cognitive performance of hospital shift work nurses. Neurobiol Learn Mem. 2019;160:151–159. doi:10.1016/j.nlm.2019.01.002
  • Valdez P, Ramírez C, García A. Circadian rhythms in cognitive performance: implications for neuropsychological assessment. Chrono Physiol Ther. 2012;2:81–92. doi:10.2147/CPT.S32586
  • Stevens JP. Outliers and influential data points in regression analysis. Psychol Bull. 1984;95(2):334. doi:10.1037/0033-2909.95.2.334
  • Doran SM, Van Dongen HP, Dinges DF. Sustained attention performance during sleep deprivation: evidence of state instability. Arch Ital Biol. 2001;139(3):253–267.
  • Shenfield L, Beanland V, Filtness A, Apthorp D. The impact of sleep loss on sustained and transient attention: an EEG study. PeerJ. 2020;8:e8960. doi:10.7717/peerj.8960
  • Dinges DF, Powell JW. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav Res Methods Instrum Comput. 1985;17(6):652–655. doi:10.3758/BF03200977
  • Basner M, Mollicone D, Dinges DF. Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation. Acta Astronaut. 2011;69(11–12):949–959. doi:10.1016/j.actaastro.2011.07.015
  • Dijk DJ, von Schantz M. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J Biol Rhythms. 2005;20(4):279–290. doi:10.1177/0748730405278292
  • Dinges DF, Pack F, Williams K, et al. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep. 1997;20(4):267–277.
  • Zhou X, Ferguson SA, Matthews RW, et al. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night. J Sleep Res. 2012;21(1):40–49. doi:10.1111/j.1365-2869.2011.00924.x
  • McHill AW, Hull JT, Wang W, Czeisler CA, Klerman EB. Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance. Proc Natl Acad Sci U S A. 2018;115(23):6070–6075. doi:10.1073/pnas.1706694115
  • Czeisler CA, Dijk D-J, Duffy JF. Entrained phase of the circadian pacemaker serves to stabilize alertness and performance throughout the habitual waking day; 1994.
  • Dijk DJ, Duffy JF, Czeisler CA. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res. 1992;1(2):112–117. doi:10.1111/j.1365-2869.1992.tb00021.x
  • Wyatt JK, Ritz-de Cecco A, Czeisler CA, Dijk DJ. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Physiol. 1999;277(4 Pt 2):R1152–1163. doi:10.1152/ajpregu.1999.277.4.r1152
  • Refinetti R. The circadian rhythm of body temperature. Front Biosci. 2010;15(3):564–594. doi:10.2741/3634
  • Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin). 2020;7(4):321–362. doi:10.1080/23328940.2020.1743605
  • Deboer T, Detari L, Meijer JH. Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep. 2007;30(3):257–262. doi:10.1093/sleep/30.3.257
  • Gent TC, Bassetti C, Adamantidis AR. Sleep-wake control and the thalamus. Curr Opin Neurobiol. 2018;52:188–197. doi:10.1016/j.conb.2018.08.002
  • Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–1263. doi:10.1038/nature04284
  • Moore-Ede MC, Sulzman FM, Sulzman FM, Fuller CA. The Clocks That Time Us: Physiology of the Circadian Timing System. Harvard University Press; 1982.
  • Zhao ZD, Yang WZ, Gao C, et al. A hypothalamic circuit that controls body temperature. Proc Natl Acad Sci U S A. 2017;114(8):2042–2047. doi:10.1073/pnas.1616255114
  • Gradisar M, Lack L. Relationships between the circadian rhythms of finger temperature, core temperature, sleep latency, and subjective sleepiness. J Biol Rhythms. 2004;19(2):157–163. doi:10.1177/0748730403261560
  • Blatter K, Graw P, Munch M, Knoblauch V, Wirz-Justice A, Cajochen C. Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav Brain Res. 2006;168(2):312–317. doi:10.1016/j.bbr.2005.11.018
  • Posada-Quintero HF, Bolkhovsky JB, Reljin N, Chon KH. Sleep deprivation in young and healthy subjects is more sensitively identified by higher frequencies of electrodermal activity than by skin conductance level evaluated in the time domain. Front Physiol. 2017;8:409. doi:10.3389/fphys.2017.00409
  • Romine W, Banerjee T, Goodman G. Toward sensor-based sleep monitoring with electrodermal activity measures. Sensors (Basel). 2019;19(6):1417. doi:10.3390/s19061417