558
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Impaired Vigilant Attention Partly Accounts for Inhibition Control Deficits After Total Sleep Deprivation and Partial Sleep Restriction

, , ORCID Icon, ORCID Icon, , , , , , ORCID Icon, & show all
Pages 1545-1560 | Published online: 16 Sep 2021

References

  • Akerstedt T. Altered sleep/wake patterns and mental performance. Physiol Behav. 2007;90(2–3):209–218. doi:10.1016/j.physbeh.2006.09.007
  • Dennis LE, Wohl RJ, Selame LA, Goel N. Healthy adults display long-term trait-like neurobehavioral resilience and vulnerability to sleep loss. Sci Rep. 2017;7(1):14889. doi:10.1038/s41598-017-14006-7
  • McHill AW, Hull JT, Cohen DA, et al. Chronic sleep restriction greatly magnifies performance decrements immediately after awakening. Sleep. 2019;42(5):zsz032. doi:10.1093/sleep/zsz032
  • Stojanoski B, Benoit A, Berg VDN, et al. Sustained vigilance is negatively affected by mild and acute sleep loss reflected by reduced capacity for decision making, motor preparation, and execution. Sleep. 2019;42(1):zsy200. doi:10.1093/sleep/zsy200
  • Fobian AD, Rouse J, Stager LM, Long D, Schwebel DC, Avis KT. The effects of sleep deprivation and text messaging on pedestrian safety in university students. Sleep. 2020;43(9):zsaa057. doi:10.1093/sleep/zsaa057
  • Lehouillier IS, Saksvik SB, Dahlberg J, et al. Mild to moderate partial sleep deprivation is associated with increased impulsivity and decreased positive affect in young adults. Sleep. 2020;43(10):zsaa078. doi:10.1093/sleep/zsaa078
  • Yamazaki EM, Goel N. Robust stability of trait-like vulnerability or resilience to common types of sleep deprivation in a large sample of adults. Sleep. 2020;43(6):zsz292. doi:10.1093/sleep/zsz292
  • Yamazaki EM, Antler CA, Lasek CR, Goel N. Residual, differential neurobehavioral deficits linger after multiple recovery nights following chronic sleep restriction or acute total sleep deprivation. Sleep. 2021;44(4):zsaa224. doi:10.1093/sleep/zsaa224
  • Simmonds DJ, Pekar JJ, Mostofsky SH. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task dependent. Neuropsychologia. 2008;46(1):224–232. doi:10.1016/j.neuropsychologia.2007.07.015
  • Congdon E, Mumford JA, Cohen JR, Galvan A, Canli T, Poldrack RA. Measurement and reliability of response inhibition. Front Psychol. 2012;3:37. doi:10.3389/fpsyg.2012.00037
  • Fuster JM. The Prefrontal Cortex. London: Academic Press; 2008.
  • Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 2013;108:44–79. doi:10.1016/j.pneurobio.2013.06.005
  • Donders FC. On the speed of mental processes. Acta Psychol. 1969;30:412–431. doi:10.1016/0001-6918(69)90065-1
  • Lowe CJ, Safari A, Hall PA. The neurocognitive consequences of sleep restriction: a meta-analytic review. Neurosci Biobehav Rev. 2017;80:586–604. doi:10.1016/j.neubiorev.2017.07.010
  • Breimhorst M, Falkenstein M, Marks A, Griefahn B. The relationship between poor sleep and inhibitory functions indicated by event-related potentials. Exp Brain Res. 2008;187(4):631–639. doi:10.1007/s00221-008-1333-9
  • Harrington M, Ashton J, Sankarasubramanian S, Anderson MC, Cairney SA. Losing control: sleep deprivation impairs the suppression of unwanted thoughts. Sleep Med. 2021;9(1):97–113. doi:10.1177/2167702620951511
  • Almklov EL, Drummond SPA, Orff H, Alhassoon OM. The effects of sleep deprivation on brain functioning in older adults. Behav Sleep Med. 2014;12(1):324–345. doi:10.1080/15402002.2014.905474
  • Rabat A, Arnal PJ, Monnard H, et al. Limited benefit of sleep extension on cognitive deficits during total sleep deprivation: illustration with two executive processes. Front Neurosci. 2019;13:591. doi:10.3389/fnins.2019.00591
  • Anderson C, Platten CR. Sleep deprivation lowers inhibition and enhances impulsivity to negative stimuli. Behav Brain Res. 2011;217(2):463–466. doi:10.1016/j.bbr.2010.09.020
  • Bocca ML, Marie S, Chavoix C. Impaired inhibition after total sleep deprivation using an antisaccade task when controlling for circadian modulation of performance. Physiol Behav. 2014;124:123–128. doi:10.1016/j.physbeh.2013.10.024
  • Drummond SP, Paulus MP, Tapert SF. Effects of two nights sleep deprivation and two nights recovery sleep on response inhibition. J Sleep Res. 2006;15(3):261–265. doi:10.1111/j.1365-2869.2006.00535.x
  • Harrison Y, Horne JA, Rothwell A. Prefrontal neuropsychological effects of sleep deprivation in young adults—a model for healthy aging? Sleep. 2000;23:1067–1073. doi:10.1093/sleep/23.8.1f
  • Patrick Y, Lee A, Raha O, et al. Effects of sleep deprivation on cognitive and physical performance in university students. Sleep Biol Rhythms. 2017;15(3):217–225. doi:10.1007/s41105-017-0099-5
  • Cohen-Zion M, Shabi A, Levy S, Glasner L, Wiener A. Effects of partial sleep deprivation on information processing speed in adolescence. J Int Neuropsychol Soc. 2016;22(4):388–398. doi:10.1017/S1355617716000072
  • Stenuit P, Kerkhofs M. Effects of sleep restriction on cognition in women. Biol Psychol. 2008;77(1):81–88. doi:10.1016/j.biopsycho.2007.09.011
  • Jarraya M, Jarraya S, Chtourou H, Souissi N, Chamari K. The effect of partial sleep deprivation on the reaction time and the attentional capacities of the handball goalkeeper. Biol Rhythm Res. 2012;44:503–510. doi:10.1080/09291016.2012.721589
  • Demos KE, Hart CN, Sweet LH, et al. Partial sleep deprivation impacts impulsive action but not impulsive decision-making. Physiol Behav. 2016;164(Part A):214–219. doi:10.1016/j.physbeh.2016.06.003
  • Rossa KR, Smith SS, Allan AC, Sullivan KA. The effects of sleep restriction on executive inhibitory control and affect in young adults. J Adolesc Health. 2014;55(2):287–292. doi:10.1016/j.jadohealth.2013.12.034
  • Schumacher AM, Miller AL, Watamura SE, Kurth S, Lebourgeois MK. Sleep moderates the association between response inhibition and self-regulation in early childhood. J Clin Child Adolesc Psychol. 2017;46(2):222–235. doi:10.1080/15374416.2016.1204921
  • Cerolini S, Ballesio A, Ferlazzo F, Lucidi F, Lombardo C. Decreased inhibitory control after partial sleep deprivation in individuals reporting binge eating: preliminary findings. PeerJ. 2020;8(5):e9252. doi:10.7717/peerj.9252
  • Rabat A, Gomez-Merino D, Roca-Paixao L, et al. Differential kinetics in alteration and recovery of cognitive processes from a chronic sleep restriction in young healthy men. Front Behav Neurosci. 2016;10:95. doi:10.3389/fnbeh.2016.00095
  • Gosselin A, De Koninck J, Campbell KB. Disentangling specific inhibitory versus general decision-making processes during sleep deprivation using a Go/No Go ERP paradigm. Int J Psychophysiol. 2019;141:18–27. doi:10.1016/j.ijpsycho.2019.04.007
  • Schapkin SA, Falkenstein M, Marks A, et al. After effects of noise-induced sleep disturbances on inhibitory functions. Life Sci. 2006;78(10):1135–1142. doi:10.1016/j.lfs.2005.06.048
  • Alhola P, Polo-Kantola P. Sleep deprivation: impact on cognitive performance. Neuropsychiatr Dis Treat. 2007;3(5):553–567.
  • Goel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2009;29:320–339. doi:10.1055/s-0029-1237117
  • Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. Prog Mol Biol Transl Sci. 2013;119:155–190. doi:10.1016/B978-0-12-396971-2.00007-5
  • Lim J, Dinges DF. Sleep deprivation and vigilant attention. Ann N Y Acad Sci. 2008;1129:305–322. doi:10.1196/annals.1417.002
  • Chee MW, Goh CS, Namburi P, Parimal S, Seidl KN, Kastner S. Effects of sleep deprivation on cortical activation during directed attention in the absence and presence of visual stimuli. Neuroimage. 2011;58(2):595–604. doi:10.1016/j.neuroimage.2011.06.058
  • Chee MW, Tan JC, Parimal S, Zagorodnov V. Sleep deprivation and its effects on object-selective attention. Neuroimage. 2010;49(2):1903–1910. doi:10.1016/j.neuroimage.2009.08.067
  • Lim J, Dinges DF. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull. 2010;136(3):375–389. doi:10.1037/a0018883
  • Sturm W, De Simone A, Krause BJ, et al. Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia. 1999;37(7):797–805. doi:10.1016/S0028-3932(98)00141-9
  • Sturm W, Willmes K. On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage. 2001;14(1):76–84. doi:10.1006/nimg.2001.0839
  • Smith CS, Reilly C, Midkiff K. Evaluation of three circadian rhythm questionnaires with suggestions for an improved measure of morningness. J Appl Psychol. 1989;74(5):728–738. doi:10.1037/0021-9010.74.5.728
  • Yang FN, Xu S, Chai Y, Basner M, Dinges DF, Rao H. Sleep deprivation enhances inter-stimulus interval effect on vigilant attention performance. Sleep. 2018;41(12):1–12. doi:10.1093/sleep/zsy189
  • Chai Y, Fang Z, Yang FN, et al. Two nights of recovery sleep restores hippocampal connectivity but not episodic memory after total sleep deprivation. Sci Rep. 2020;10(1):8774. doi:10.1038/s41598-020-65086-x
  • Dinges DF, Powell JW. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav Res Methods Instrum Comput. 1985;17(6):652–655. doi:10.3758/BF03200977
  • Basner M, Hermosillo E, Nasrini J, et al. Repeated administration effects on psychomotor vigilance test (PVT) performance. Sleep. 2018;41(1):1–6. doi:10.1093/sleep/zsx187
  • Horne JA, Ostberg OA. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.
  • Zhang B, Hao YL, Rong RG. The reliability and validity of Chinese version morningness /eveningness questionnaire. Chin J Behavioral Med Sci. 2006;15(9):856–858.
  • Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. doi:10.1016/0165-1781(89)90047-4
  • Buysse DJ, Reynolds CF, Monk TH, Hoch CC, Yeager AL, Kupfer DJ. Quantification of subjective sleep quality in healthy elderly men and women using the Pittsburgh Sleep Quality Index. J Sleep Res Sleep Med. 1991;14(4):331–338. doi:10.1093/sleep/14.4.331
  • Liu XC, Tang MQ, Hu L, et al. Reliability and validity of the Pittsburgh sleep quality index. Chin J Psychiatry. 1996;29(2):103–107.
  • Zung WWK. A rating instrument for anxiety disorders. Psychosomatics. 1971;12:371–379. doi:10.1016/S0033-3182(71)71479-0
  • Wu WY. Self-rating anxiety scale. Shanghai Arch Psychiatry. 1990;2:44.
  • Goldberg DP. The Detection of Psychiatric Illness by Questionnaire. Oxford: Oxford University Press; 1972.
  • Li H, Mei JR. Assessing psychological well-being of college student: psychometric properties of GHQ-20. Psychol Dev Educ. 2002;18(1):75–79.
  • Beck AT, Beamesberfer A. Assessment of depression: the depression inventory. Psychol Meas Psychopharmacol. 1974;7:151–169. doi:10.1159/000395074
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300. doi:10.1111/j.2517-6161.1995.tb02031.x
  • Pilcher JJ, Band D, Odle-Dusseau HN, Muth ER. Human performance under sustained operations and acute sleep deprivation conditions: toward a model of controlled attention. Aviat Space Environ Med. 2007;78(Suppl 5):B15–B24.
  • Kusztor A, Raud L, Juel BE, Nilsen AS, Storm JF, Huster RJ. Sleep deprivation differentially affects subcomponents of cognitive control. Sleep. 2019;42(4):zsz016. doi:10.1093/sleep/zsz016
  • Mostofsky SH, Simmonds DJ. Response inhibition and response selection: two sides of the same coin. J Cogn Neurosci. 2008;20(5):751–761. doi:10.1162/jocn.2008.20500
  • Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci. 2007;10(2):240–248. doi:10.1038/nn1830
  • Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex. 2001;11(9):825–836. doi:10.1093/cercor/11.9.825
  • Aron AR, Poldrack RA. The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1285–1292. doi:10.1016/j.biopsych.2004.10.026
  • Jennings JR, Monk TH, van der Molen MW. Sleep deprivation influences some but not all processes of supervisory attention. Psychol Sci. 2003;14:473–479. doi:10.1111/1467-9280.02456
  • Banks S, Van Dongen HPA, Maislin G, Dinges DF. Neurobehavioral dynamics following chronic sleep restriction: dose-response effects of one night for recovery. Sleep. 2010;33(8):1013–1026. doi:10.1093/sleep/33.8.1013
  • Belenky G, Wesensten NJ, Thorne DR, et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res. 2003;12(1):1–12. doi:10.1046/j.1365-2869.2003.00337.x
  • Krause AJ, Simon EB, Mander BA, et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18:404–418. doi:10.1038/nrn.2017.55
  • Massar S, Lim J, Sasmita K, Chee M. Sleep deprivation increases the costs of attentional effort: performance, preference and pupil size. Neuropsychologia. 2019;123:169–177. doi:10.1016/j.neuropsychologia.2018.03.032
  • Short MA, Weber N, Reynolds C, Coussens S, Carskadon MA. Estimating adolescent sleep need using dose-response modeling. Sleep. 2018;41(4):zsy011. doi:10.1093/sleep/zsy011
  • Van Dongen HP, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26:117–126. doi:10.1093/sleep/26.2.117
  • Chee MW, Tan JC, Zheng H, Parimal S, Weissman DH, Zagorodnov V. Lapsing during sleep deprivation is associated with distributed changes in brain activation. J Neurosci. 2008;28(21):5519–5528. doi:10.1523/JNEUROSCI.0733-08.2008
  • Chee MW, Tan JC. Lapsing when sleep deprived, neural activation characteristics of resistant and vulnerable individuals. Neuroimage. 2010;51(2):835–843. doi:10.1016/j.neuroimage.2010.02.031
  • Czisch M, Wehrle R, Harsay HA, et al. On the need of objective vigilance monitoring, effects of sleep loss on target detection and task-negative activity using combined EEG/fMRI. Front Neurol. 2012;3(67):1–12. doi:10.3389/fneur.2012.00067
  • Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005;25:117–129. doi:10.1055/s-0029-1237117
  • Thomas M, Sing H, Belenky G, et al. Neural basis of alertness and cognitive performance impairments during sleepiness I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000;9(4):335–352. doi:10.1046/j.1365-2869.2000.00225.x
  • Tomasi D, Wang RL, Telang F, et al. Impairment of attentional networks after 1 night of sleep deprivation. Cerebral Cortex. 2009;19(1):233–240. doi:10.1093/cercor/bhn073
  • Drummond SPA, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick S, Meloy MJ. The neural basis of the psychomotor vigilance task. Sleep. 2005;28(9):1059–1068. doi:10.1093/sleep/28.9.1059
  • Hiroyasu T, Fukushima A, Yokouchi H. Differences in blood flow between auditory and visual stimuli in the Psychomotor Vigilance Task and GO/NO GO Task. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2012; IEEE. 1466–1469. doi:10.1109/EMBC.2012.6346217
  • Hudson AN, Hansen DA, Hinson JM, et al. Speed/accuracy trade-off in the effects of acute total sleep deprivation on a sustained attention and response inhibition task. Chronobiol Int. 2020;37(9–10):1441–1444. doi:10.1080/07420528.2020.1811718
  • Santhi N, Horowitz TS, Duffy JF, Czeisler CA. Acute sleep deprivation and circadian misalignment associated with transition onto the first night of work impairs visual selective attention. PLoS One. 2007;2(11):e1233. doi:10.1371/journal.pone.0001233
  • Arnal PJ, Sauvet F, Leger D, et al. Benefits of sleep extension on sustained attention and sleep pressure before and during total sleep deprivation and recovery. Sleep. 2015;38:1935–1943. doi:10.5665/sleep.5244
  • Gujar N, Yoo SS, Hu P, Walker MP. The unrested resting brain: sleep deprivation alters activity within the default-mode network. J Cogn Neurosci. 2010;22:1637–1648. doi:10.1162/jocn.2009.21331
  • Burle B, Vidal F, Bonnet M. Electroencephalographic Nogo potentials in a no-movement context: the case of motor imagery in humans. Neurosci Lett. 2004;360:77–80. doi:10.1016/j.neulet.2004.02.034
  • Grant LK, Cain SW, Chang AM, Saxena R, Czeisler CA, Anderson C. Impaired cognitive flexibility during sleep deprivation among carriers of the Brain Derived Neurotrophic Factor (BDNF) Val66Met allele. Behav Brain Res. 2018;2017:51–55. doi:10.1016/j.bbr.2017.09.025
  • Van Dongen HPA, Baynard MD, Maislin G, Dinges DF. Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability. Sleep. 2004;27(3):423–433. doi:10.1093/sleep/27.3.423