165
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Nocturnal Brain Activity Differs with Age and Sex: Comparisons of Sleep EEG Power Spectra Between Young and Elderly Men, and Between 60–80-Year-Old Men and Women

ORCID Icon, &
Pages 1611-1630 | Published online: 21 Sep 2021

References

  • Berry RB, Quan SF, Abreu AR, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.6. American Academy of Sleep Medicine, Darien, IL; 2020.
  • Danker-Hopfe H, Schäfer M, Dorn H, et al. Percentile reference charts for selected sleep parameters for 20- to 80-Year-Old healthy subjects from the SIESTA database. Somnologie. 2005;9(1):3–14. doi:10.1111/j.1439-054X.2004.00038.x
  • Hertenstein E, Gabryelska A, Spiegelhalder K, et al. Reference Data for Polysomnography-Measured and Subjective Sleep in Healthy Adults. J Clin Sleep Med. 2018;14(4):523–532. doi:10.5664/jcsm.7036
  • Mitterling T, Hogl B, Schonwald SV, et al. Sleep and Respiration in 100 Healthy Caucasian Sleepers–A Polysomnographic Study According to American Academy of Sleep Medicine Standards. Sleep. 2015;38(6):867–875. doi:10.5665/sleep.4730
  • Yetton BD, McDevitt EA, Cellini N, Shelton C, Mednick SC. Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks. PLoS One. 2018;13(4):e0194604. doi:10.1371/journal.pone.0194604
  • Danker-Hopfe H, Dorn H, Sauter C, Schmid G, Eggert T. An experimental study on effects of radiofrequency electromagnetic fields on sleep in healthy elderly males and females: gender matters! Environ Res. 2020;183:109181. doi:10.1016/j.envres.2020.109181
  • Eggert T, Dorn H, Sauter C, Schmid G, Danker-Hopfe H. RF-EMF exposure effects on sleep - Age doesn’t matter in men! Environ Res. 2020;191:110173. doi:10.1016/j.envres.2020.110173
  • Puligheddu M, de Munck JC, Stam CJ, et al. Age distribution of MEG spontaneous theta activity in healthy subjects. Brain Topogr. 2005;17(3):165–175. doi:10.1007/s10548-005-4449-2
  • van Albada SJ, Kerr CC, Chiang AK, Rennie CJ, Robinson PA. Neurophysiological changes with age probed by inverse modeling of EEG spectra. Clin Neurophysiol. 2010;121(1):21–38. doi:10.1016/j.clinph.2009.09.021
  • Jobert M, Wilson FJ, Roth T, et al. Guidelines for the recording and evaluation of pharmaco-sleep studies in man: the International Pharmaco-EEG Society (IPEG). Neuropsychobiology. 2013;67(3):127–167. doi:10.1159/000343449
  • Sun H, Paixao L, Oliva JT, et al. Brain age from the electroencephalogram of sleep. Neurobiol Aging. 2019;74:112–120. doi:10.1016/j.neurobiolaging.2018.10.016
  • Ye E, Sun H, Leone MJ, et al. Association of Sleep Electroencephalography-Based Brain Age Index With Dementia. JAMA Netw Open. 2020;3(9):e2017357. doi:10.1001/jamanetworkopen.2020.17357
  • Zhao W, Van Someren EJW, Li C, et al. EEG spectral analysis in insomnia disorder: a systematic review and meta-analysis. Sleep Med Rev. 2021;59:101457. doi:10.1016/j.smrv.2021.101457
  • Marzano C, Ferrara M, Moroni F, De Gennaro L. Electroencephalographic sleep inertia of the awakening brain. Neuroscience. 2011;176:308–317. doi:10.1016/j.neuroscience.2010.12.014
  • Akerstedt T, Gillberg M. Sleep duration and the power spectral density of the EEG. Electroencephalogr Clin Neurophysiol. 1986;64(2):119–122. doi:10.1016/0013-4694(86)90106-9
  • Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol. 1981;51(5):483–495. doi:10.1016/0013-4694(81)90225-X
  • Dijk DJ, Brunner DP, Beersma DG, Borbely AA. Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase. Sleep. 1990;13(5):430–440. doi:10.1093/sleep/13.5.430
  • Fernandez LMJ, Luthi A. Sleep Spindles: mechanisms and Functions. Physiol Rev. 2020;100(2):805–868. doi:10.1152/physrev.00042.2018
  • ICNIRP (International Commission on Non-Ionizing Radiation Protection). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020;118(5):483–524. doi:10.1097/HP.0000000000001210
  • Chen W, Black J. Chapter 10 Quantitative analysis of the sleep electroencephalogram. In: Guilleminault C, editor. Handbook of Clinical Neurophysiology. Vol. 6. Elsevier; 2005:103–124.
  • D’Rozario AL, Cross NE, Vakulin A, et al. Quantitative electroencephalogram measures in adult obstructive sleep apnea - Potential biomarkers of neurobehavioural functioning. Sleep Med Rev. 2017;36:29–42. doi:10.1016/j.smrv.2016.10.003
  • Carrier J, Land S, Buysse DJ, Kupfer DJ, Monk TH. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old). Psychophysiology. 2001;38(2):232–242. doi:10.1111/1469-8986.3820232
  • Dijk DJ, Beersma DG, Bloem GM. Sex differences in the sleep EEG of young adults: visual scoring and spectral analysis. Sleep. 1989;12(6):500–507. doi:10.1093/sleep/12.6.500
  • Schwarz JFA, Akerstedt T, Lindberg E, Gruber G, Fischer H, Theorell-Haglow J. Age affects sleep microstructure more than sleep macrostructure. J Sleep Res. 2017;26(3):277–287. doi:10.1111/jsr.12478
  • Sprecher KE, Riedner BA, Smith RF, Tononi G, Davidson RJ, Benca RM. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography. PLoS One. 2016;11(2):e0149770. doi:10.1371/journal.pone.0149770
  • Svetnik V, Snyder ES, Ma J, Tao P, Lines C, Herring WJ. EEG spectral analysis of NREM sleep in a large sample of patients with insomnia and good sleepers: effects of age, sex and part of the night. J Sleep Res. 2017;26(1):92–104. doi:10.1111/jsr.12448
  • Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi:10.1016/0165-1781(89)90047-4
  • Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–545. doi:10.1093/sleep/14.6.540
  • Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.
  • Hoffmann RM, Müller T, Hajak G, Cassel W. Arbeitsgruppe Diagnostik der Deutschen Gesellschaft für Schlafforschung und Schlafmedizin DGSM. Abend-Morgenprotokolle in Schlafforschung und Schlafmedizin—Ein Standardinstrument für den deutschsprachigen Raum. Somnologie. 1997;1(3):103–109. doi:10.1007/s11818-997-0019-z
  • Zung WW. A Self-Rating Depression Scale. Arch Gen Psychiatry. 1965;12:63–70. doi:10.1001/archpsyc.1965.01720310065008
  • Zung WW. A rating instrument for anxiety disorders. Psychosomatics. 1971;12(6):371–379. doi:10.1016/S0033-3182(71)71479-0
  • Iber C, Ancoli-Israel S, Chesson AL, Quan. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine, Westchester, IL; 2007.
  • Jasper HH. Report of the committee on methods of clinical examination in electroencephalography (Appendix: the ten-twenty electrode system of the International Federation). Electroencephalogr Clin Neurophysiol. 1958;10(2):371–375. doi:10.1016/0013-4694(58)90053-1
  • Anderer P, Gruber G, Parapatics S, et al. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database. Neuropsychobiology. 2005;51(3):115–133. doi:10.1159/000085205
  • Anderer P, Moreau A, Woertz M, et al. Computer-assisted sleep classification according to the standard of the American Academy of Sleep Medicine: validation study of the AASM version of the Somnolyzer 24 x 7. Neuropsychobiology. 2010;62(4):250–264. doi:10.1159/000320864
  • Welch PD, Direct Digital A. Method of Power Spectrum Estimation. IBM J Res Dev. 1961;5(2):141–156. doi:10.1147/rd.52.0141
  • Adamczyk M, Genzel L, Dresler M, Steiger A, Friess E. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform. Front Hum Neurosci. 2015;9:624. doi:10.3389/fnhum.2015.00624
  • Gasser T, Bacher P, Mocks J. Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol. 1982;53(1):119–124. doi:10.1016/0013-4694(82)90112-2
  • Mensen A, Khatami R. Advanced EEG analysis using threshold-free cluster-enhancement and non-parametric statistics. Neuroimage. 2013;67:111–118. doi:10.1016/j.neuroimage.2012.10.027
  • Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44(1):83–98. doi:10.1016/j.neuroimage.2008.03.061
  • Mensen A. Advances EEG statistics: ept_TFCE-matlab; 2015. Available from: https://github.com/Mensen/ept_TFCE-matlab. Accessed September 9, 2021.
  • Harrison Y, Horne JA. “High sleepability without sleepiness”. The ability to fall asleep rapidly without other signs of sleepiness. Neurophysiol Clin. 1996;26(1):15–20. doi:10.1016/0987-7053(96)81530-9
  • Thomas SJ, Lichstein KL, Taylor DJ, Riedel BW, Bush AJ. Epidemiology of bedtime, arising time, and time in bed: analysis of age, gender, and ethnicity. Behav Sleep Med. 2014;12(3):169–182. doi:10.1080/15402002.2013.778202
  • Didikoglu A, Maharani A, Payton A, Pendleton N, Canal MM. Longitudinal change of sleep timing: association between chronotype and longevity in older adults. Chronobiol Int. 2019;36(9):1285–1300. doi:10.1080/07420528.2019.1641111
  • Randler C, Engelke J. Gender differences in chronotype diminish with age: a meta-analysis based on morningness/chronotype questionnaires. Chronobiol Int. 2019;36(7):888–905. doi:10.1080/07420528.2019.1585867
  • Frauscher B, Gabelia D, Mitterling T, et al. Motor events during healthy sleep: a quantitative polysomnographic study. Sleep. 2014;37(4):763–773, 773A-773B. doi:10.5665/sleep.3586
  • Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.
  • Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron. 2017;94(1):19–36. doi:10.1016/j.neuron.2017.02.004
  • Martin N, Lafortune M, Godbout J, et al. Topography of age-related changes in sleep spindles. Neurobiol Aging. 2013;34(2):468–476. doi:10.1016/j.neurobiolaging.2012.05.020
  • Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93(2):681–766. doi:10.1152/physrev.00032.2012
  • Nunez PL, Srinivasan R. Chapter 4: electric Fields and Currents in Biological Tissue. In: Electric Fields of the Brain: The Neurophysics of EEG. Oxford: Oxford University Press; 2006.
  • Tang C, You FS, Cheng G, et al. Correlation between structure and resistivity variations of the live human skull. IEEE T Bio-Med Eng. 2008;55(9):2286–2292. doi:10.1109/TBME.2008.923919
  • Lillie EM, Urban JE, Lynch SK, Weaver AA, Stitzel JD. Evaluation of Skull Cortical Thickness Changes With Age and Sex From Computed Tomography Scans. J Bone Miner Res. 2016;31(2):299–307. doi:10.1002/jbmr.2613
  • Hagemann D, Hewig J, Walter C, Naumann E. Skull thickness and magnitude of EEG alpha activity. Clin Neurophysiol. 2008;119(6):1271–1280. doi:10.1016/j.clinph.2008.02.010
  • Tan X, Campbell IG, Feinberg I. Internight reliability and benchmark values for computer analyses of non-rapid eye movement (NREM) and REM EEG in normal young adult and elderly subjects. Clin Neurophysiol. 2001;112(8):1540–1552. doi:10.1016/S1388-2457(01)00570-3
  • Tan X, Campbell IG, Palagini L, Feinberg I. High internight reliability of computer-measured NREM delta, sigma, and beta: biological implications. Biol Psychiatry. 2000;48(10):1010–1019. doi:10.1016/S0006-3223(00)00873-8
  • Gautam P, Cherbuin N, Sachdev PS, Wen W, Anstey KJ. Sex differences in cortical thickness in middle aged and early old-aged adults: personality and Total Health Through Life study. Neuroradiology. 2013;55(6):697–707. doi:10.1007/s00234-013-1144-y
  • Dube J, Lafortune M, Bedetti C, et al. Cortical thinning explains changes in sleep slow waves during adulthood. J Neurosci. 2015;35(20):7795–7807. doi:10.1523/JNEUROSCI.3956-14.2015
  • Muehlroth BE, Werkle-Bergner M. Understanding the interplay of sleep and aging: methodological challenges. Psychophysiology. 2020;57(3):e13523. doi:10.1111/psyp.13523
  • Brown AMC, Gervais NJ. Role of Ovarian Hormones in the Modulation of Sleep in Females Across the Adult Lifespan. Endocrinology. 2020;161(9):258. doi:10.1210/endocr/bqaa128