163
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Sleep Quality is Associated with Axial Length Elongation in Myopic Children Receiving Orthokeratology: A Retrospective Study

, , ORCID Icon, , , & ORCID Icon show all
Pages 993-1001 | Received 15 May 2023, Accepted 14 Nov 2023, Published online: 29 Nov 2023

References

  • Modjtahedi BS, Abbott RL, Fong DS, Lum F, D.Tan M. task force on, reducing the global burden of myopia by delaying the onset of myopia and reducing myopic progression in children: the academy’s task force on myopia. Ophthalmol. 2021;128(6):816–826.
  • Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmol. 2016;123(5):1036–1042. doi:10.1016/j.ophtha.2016.01.006
  • Jiang D, Shi B, Gao H, Guo Y, Zhou S, Zhang Y. Associations between reading and writing postures and myopia among school students in Ningbo, China. Front Pub Health. 2022;10:713377. doi:10.3389/fpubh.2022.713377
  • Philipp D, Vogel M, Brandt M, et al. The relationship between myopia and near work, time outdoors and socioeconomic status in children and adolescents. BMC Pub Health. 2022;22(1):2058. doi:10.1186/s12889-022-14377-1
  • Bullimore MA, Ritchey ER, Shah S, Leveziel N, Bourne RRA, Flitcroft DI. the risks and benefits of myopia control. Ophthalmol. 2021;128(11):1561–1579. doi:10.1016/j.ophtha.2021.04.032
  • Wang CY, Hsu NW, Yang YC, Chen YL, Shyong MP, Tsai DC. Premyopia at preschool age: population-based evidence of prevalence and risk factors from a serial survey in Taiwan. Ophthalmol. 2022;129(8):880–889. doi:10.1016/j.ophtha.2022.03.017
  • Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev. 2020;1(1):CD004916. doi:10.1002/14651858.CD004916.pub4
  • Pan M, Zhao F, Xie B, et al. Dietary omega-3 polyunsaturated fatty acids are protective for myopia. Proc Natl Acad Sci U S A. 2021;118(43). doi:10.1073/pnas.2104689118
  • Dong J, Zhu Z, Xu H, He M. Myopia control effect of repeated low-level red-light therapy in Chinese children: a randomized, double-blind, controlled clinical trial. Ophthalmol. 2023;130(2):198–204. doi:10.1016/j.ophtha.2022.08.024
  • Xiang K, Chen J, Zhao W, et al. Changes of corneal biomechanics in children using orthokeratology and their roles in predicting axial length progression-A prospective 2-year study. Acta Ophthalmol. 2023;101(7):755–765. doi:10.1111/aos.15662
  • Guo X, Xie PY. Effection of tear film stability on orthokeratology. Zhonghua Yan Ke Za Zhi. 2023;59(3):237–241. doi:10.3760/cma.j.cn112142-20221017-00517
  • Tang T, Li X, Chen S, et al. Long-term follow-up of changes in ocular biometric parameters in orthokeratology lens wearers with relatively large-scale axial length reduction. Eye Vis. 2023;10(1):6. doi:10.1186/s40662-022-00324-z
  • Lin W, Li N, Lu K, Li Z, Zhuo X, Wei R. The relationship between baseline axial length and axial elongation in myopic children undergoing orthokeratology. Ophthalmic Physiol Opt. 2023;43(1):122–131. doi:10.1111/opo.13070
  • He J, Lin YY, Chen J, et al. Association of sleep quality with myopia based on different genetic risk levels. Int J Ophthalmol. 2022;15(10):1657–1664. doi:10.18240/ijo.2022.10.14
  • Chu M, Zhao Y, Hu P, Chen D, Yu Y, Ni H. Is orthokeratology treatment zone decentration effective and safe in controlling myopic progression? Eye Cont Lens. 2023;49(4):147–151. doi:10.1097/ICL.0000000000000981
  • Chen MF, Liu XT, Zhang F, Wang YL, Mao XJ. The influencing factors and the effect of myopia control in children treated with orthokeratology. Zhonghua Yan Ke Za Zhi. 2022;58(4):259–264. doi:10.3760/cma.j.cn112142-20210801-00360
  • Jakobsen TM, Sondergaard AP, Moller F. Peripheral refraction, relative peripheral refraction, and axial growth: 18-month data from the randomised study-clinical study of near-sightedness; treatment with orthokeratology lenses (CONTROL study). Acta Ophthalmol. 2023;101(1):e69–e80. doi:10.1111/aos.15217
  • de Feijter M, Kocevska D, Ikram MA, Luik AI. The bidirectional association of 24-h activity rhythms and sleep with depressive symptoms in middle-aged and elderly persons. Psychol Med. 2023;53(4):1418–1425. doi:10.1017/S003329172100297X
  • Wang B, Naidu RK, Qu X. Factors related to axial length elongation and myopia progression in orthokeratology practice. PLoS One. 2017;12(4):e0175913. doi:10.1371/journal.pone.0175913
  • Fang J, Zheng Y, Mou H, Shi M, Yu W, Du C. Machine learning for predicting the treatment effect of orthokeratology in children. Front Pediatr. 2022;10:1057863. doi:10.3389/fped.2022.1057863
  • Nakamura Y, Hieda O, Yokota I, Teramukai S, Sotozono C, Kinoshita S. Comparison of myopia progression between children wearing three types of orthokeratology lenses and children wearing single-vision spectacles. Jpn J Ophthalmol. 2021;65(5):632–643. doi:10.1007/s10384-021-00854-4
  • Chen Z, Xue F, Zhou J, et al. Prediction of orthokeratology lens decentration with corneal elevation. Optom Vis Sci. 2017;94(9):903–907. doi:10.1097/OPX.0000000000001109
  • Chen X, Xiong Y, Liu F, Wang J, Yang B, Liu L. Factors determining the myopia control effect of an orthokeratology lens: a two-year multi-level model. Ophthalmic Physiol Opt. 2022;42(4):786–796. doi:10.1111/opo.12990
  • He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314(11):1142–1148. doi:10.1001/jama.2015.10803
  • Li X, Hu J, Peng Z, et al. Association between choriocapillaris perfusion and axial elongation in children using defocus incorporated multiple segments (DIMS) spectacle lenses. Eye. 2023. doi:10.1038/s41433-023-02629-2
  • Chang LC, Sun CC, Liao LL. Orthokeratology compliance, digital device use, and myopia control among children with myopia during COVID-19 home confinement in Taiwan. IN J Ophthalmol. 2023;71(3):962–966. doi:10.4103/ijo.IJO_1384_22
  • Wang Z, Meng Y, Wang Z, et al. Crystalline lens thickness change is associated with axial length elongation and myopia progression in orthokeratology. Cont Lens Anterior Eye. 2022;45(4):101534. doi:10.1016/j.clae.2021.101534
  • Zhao W, Wang J, Chen J, et al. The rate of orthokeratology lens use and associated factors in 33,280 children and adolescents with myopia: a cross-sectional study from Shanghai. Eye. 2023;37(15):3263–3270. doi:10.1038/s41433-023-02503-1
  • Ayaki M, Torii H, Tsubota K, Negishi K. Decreased sleep quality in high myopia children. Sci Rep. 2016;6(1):33902. doi:10.1038/srep33902
  • Shi Y, Ma D, Li X, et al. Ethnic disparities in risk factors for myopia among Han and minority schoolchildren in Shawan, Xinjiang, China. Optom Vis Sci. 2023;100(1):82–90. doi:10.1097/OPX.0000000000001949
  • Li M, Tan CS, Xu L, et al. Sleep patterns and myopia among school-aged children in Singapore. Front Pub Health. 2022;10:828298. doi:10.3389/fpubh.2022.828298
  • Stafford-Bell N, McVeigh J, Lingham G, et al. Associations of 12-year sleep behaviour trajectories from childhood to adolescence with myopia and ocular biometry during young adulthood. Ophthalmic Physiol Opt. 2022;42(1):19–27. doi:10.1111/opo.12905
  • Baranwal N, Yu PK, Siegel NS. Sleep physiology, pathophysiology, and sleep hygiene. Prog Cardiovasc Dis. 2023;77:59–69. doi:10.1016/j.pcad.2023.02.005
  • Chakraborty R, Micic G, Thorley L, et al. Myopia, or near-sightedness, is associated with delayed melatonin circadian timing and lower melatonin output in young adult humans. Sleep. 2021;44(3). doi:10.1093/sleep/zsaa208
  • Yu H, Wang Q, Wu W, Zeng W, Feng Y. Therapeutic effects of melatonin on ocular diseases: knowledge map and perspective. Front Pharmacol. 2021;12:721869. doi:10.3389/fphar.2021.721869