27
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens

, , , , , , & show all
Pages 1-8 | Published online: 24 Sep 2012

References

  • Hume ME. Historic perspective: Prebiotics, probiotics, and other alternatives to antibiotics. Poult Sci. 2011;90:2663–2669.
  • Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin Microbiol Rev. 2003;16:175–188.
  • Diarra MS, Silversides FG, Diarrassouba F, et al. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl Environ Microbiol. 2007;73:6566–6576.
  • Ferket P. Strategies for finding alternatives to growth promoters, 2011. Available from: http://en.engormix.com/MA-poultry-industry/management/articles/strategies-finding-alternatives-growth-t1771/124-p0.htm. accessed August 1, 2012.
  • Monteiro DR, Gorup LF,TakamiyaAS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion:antimicrobial effect of medical devices containing silver. Int J Antimicrobial Agents. 2009;34:103–110.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.
  • Fondevila M. Potential use of silver nanoparticles as an additive in animal feeding, 2010. Available from: http://www.intechopen.com/articles/show/title/potential-use-of-silver-nanoparticles-as-an-additivein-animal-feeding. accessed August 1, 2012.
  • Sawosz E, Binek M, Grodzik M, et al. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr. 2007;61:444–451.
  • Lok CN, Ho CM, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5: 916–924.
  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18:225103.
  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol. 2010; 242:263–269.
  • Lara H, Ayala-Núñez N, Ixtepan Turrent L, Rodríguez Padilla C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol. 2010;26:615–621.
  • Sawosz E, Chwalibog A, Mitura K, et al. Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella enteritidis and Listeria monocytogenes. J Nanosci Nanotechnol. 2011;11: 7635–7641.
  • Burrell RE, Heggers JP, Davis GJ, Wright JB. Efficacy of silver-coated dressings as bacterial barriers in a rodent burn sepsis model. Wounds. 1999;11:64–71.
  • Yin HQ, Langford R, Burrell RE. Comparative evaluation of the antimicrobial activity of Acticoat antimicrobial barrier dressing. J Burn Care Rehabil. 1999;20:195–200.
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353.
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.
  • Wijnhoven SWP, Peijnenburg WJGM, et al. Nanosilver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009;3:109–138.
  • Varner KE, El-Badawy A, Feldhake D, Venkatapathy R. State-Of-The-Science Review: Everything Nano Silver and More. Washington, DC: US Environmental Protection Agency; 2010.
  • Grodzik M, Sawosz E. The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology. J Anim Feed Sci. 2006;1:111–114.
  • Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ. Silver nanoparticles as potential antimicrobial additive for weaned pigs. Anim Feed Sci and Tech. 2009;150:259–269.
  • Sawosz E, Grodzik M, Zielinska M, Niemiec T, Olszanska B, Chwalibog A. Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Eur Poult Sci. 2009;73: 208–213.
  • Chwalibog A, Sawosz E, Hotowy A, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine. 2010;5:1085–1094.
  • Engberg RM, Hedemann MS, Leser TD, Jensen BB. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult Sci. 2000;79:1311–1319.
  • Canibe N, Højberg O, Badsberg JH, Jensen BB. Effect of feeding fermented feed and fermented grain on gastrointestinal ecology and growth performance in piglets. J Anim Sci. 2007;85:2959–2971.
  • SAS Institute Inc. SAS Procedure Guide. Version 9.2. Cary, NC: SAS Institute Inc; 2009.
  • Pineda L, Chwalibog A, Sawosz E, et al. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr. 2012. DOI: 10.1080/1745039X.2012.710081.
  • Panáč A, Kvítek L, Prucek R, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–16253.
  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano. 2007;1:133–143.
  • Lok CN, Ho C, Chen R, HE Q, Yu W. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem. 2007;12: 527–534.
  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3:168–171.
  • Yoon K-Y, Hoon Byeon J, Park J-H, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373:572–575.
  • Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta. 2005;51:956–960.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–1720.
  • Strompfová V, Lauková A. In vitro study on bacteriocin production of Enterococci associated with chickens. Anaerobe. 2007;13:228–237.
  • Lahtinen S, Ouwehand AC, Salminen S, Wright AV. Lactic Acid Bacteria: Microbiological and Functional Aspects. 4th ed. Boca Raton, FL: CRC Press; 2012.
  • Diebner JJ, Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res. 2002;11:453–463.
  • Ricke SC. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci. 2003;82:632–639.
  • Van Der Wielen PW, Biesterveld JJ, Notermans S, et al. Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl Environ Microbiol. 2000;66:2536–2540.
  • Byrd J, Hargis B, Caldwell D, et al. Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on Salmonella and Campylobacter contamination of broilers. Poult Sci. 2001;80: 278–283.
  • Griggs JP, Jacob JP. Alternatives to antibiotics for organic poultry production. J Appl Poult Res. 2005;14:750–756.
  • Van Immerseel FJB, Russell FJ, Flythe MD, et al. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathol. 2006;35:182–188.