22
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Statistical analysis of exon lengths in various eukaryotes

, &
Pages 1-15 | Published online: 19 Jan 2011

References

  • Bolshoy A, Volkovich Z, Kirzhner V Barzily Z. Genome clustering: From Linguistic Models to Classification of Genetic Texts. Studies in Computational Intelligence Series. Kacprzyk J, editor. Berlin, Heidelberg: Springer-Verlag; 2010.
  • Kaplunovsky A, Khailenko VA, Bolshoy A, Atambayeva SA, Ivashchenko AT. Statistics of exon lengths in animals, plants, fungi, and protists. Int J Biol Life Sci. 2009;1:139–144.
  • Kaplunovsky A, Zabrodsky D, Volkovich Z, Ivashchenko AT, Bolshoy A. Statistics of exon lengths in fungi. Open Bioinformatics J. 2010;4:31–40.
  • Kupfer DM, Drabenstot SD, Buchanan KL, et al. Introns and splicing elements of five diverse fungi. Eukaryot Cell. 2004;3:1088–1100.
  • Deutsch M, Long M. Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res. 1999;27:3219–3228.
  • Wendel JF, Cronn RC, Alvarez I, Liu B, Small RL, Senchina DS. Intron size and genome size in plants. Mol Biol Evol. 2002;19:2346–2352.
  • Sakharkar MK, Chow VT, Kangueane P. Distributions of exons and introns in the human genome. In Silico Biol. 2004;4:387–393.
  • Roy SW, Penny D. Intron length distributions and gene prediction. Nucleic Acids Res. 2007;35:4737–4742.
  • Naora H, Deacon NJ. Relationship between the total size of exon and introns in the protein-coding genes of higher eukaryotes. Proc Natl Acad Sci USA. 1982;79:6196–6200.
  • Hawkins JD. A survey on intron and exon lengths. Nucleic Acids Res. 1988;16:9893–9908.
  • Kriventseva EV Gelfand MS. Statistical analysis of the exon-intron structure of higher and lower eukaryote genes. J Biomol Struct Dyn. 1999;17:281–288.
  • Ivashchenko AT, Atambayeva SA. Variation in lengths of introns and exons in genes of the Arabidopsis thaliana nuclear genome. Russ J Genet. 2004;40:1179–1181.
  • Atambayeva SA, Khailenko VA, Ivashchenko AT. Intron and exon length variation in arabidopsis, rice, nematode, and human. Mol Biol. 2008;42:312–320.
  • Ivashchenko AT, Khailenko VA, Atambayeva SA. Variation of the lengths of exons and introns in human genome genes. Russ J Genet. 2009;45:16–22.
  • Ivashchenko AT, Tauasarova MI, Atambayeva SA. Exon-intron structure of genes in complete fungal genomes. Mol Biol. 2009;43:24–31.
  • Zhu LC, Zhang Y, Zhang W, Yang SH, Chen JQ, Tian DC. Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics. 2009;10:12.
  • Collins FS, Lander ES, Rogers J, Waterston RH. International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–945.
  • Schwarz EM, Antoshechkin I, Bastiani C, et al. WormBase: Better software, richer content. Nucleic Acids Res. 2006;34 Database Issue: D475-D478.
  • Drysdale RA, Crosby MA, FlyBase C. FlyBase: Genes and gene models. Nucleic Acids Res. 2005;33:D390-D395.
  • Haas BJ, Wortman JR, Ronning CM, et al. Complete reannotation of the Arabidopsis genome: Methods, tools, protocols and the final release. BMC Biol. 2005;3:7.
  • Logsdon JMJ, Stoltzfus A, Doolittle WF. Molecular evolution: Recent cases of spliceosomal intron gain? Curr Biol. 1998;8:R560-R563.
  • Archibald JM, O’Kelly CJ, Doolittle WF. The chaperonin genes of jakobid and jakobid-like flagellates: Implications for eukaryotic evolution. Mol Biol Evol. 2002;19:422–431.
  • Loftus BJ, Fung E, Roncaglia P, et al. The genome of the basidiomyc- etous yeast and human pathogen Cryptococcus neoformans. Science. 2005;307:1321–1324.
  • Martinez D, Berka RM, Henrissat B, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008;26:553–560.
  • Gudlaugsdottir S, Boswell DR, Wood GR, Ma J. Exon size distribution and the origin of introns. Genetica. 2007;131:299–306.
  • Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
  • Ren XY, Vorst O, Fiers MWEJ, Stiekema WJ, Nap JP. In plants, highly expressed genes are the least compact. Trends Genet. 2006;22:528–532.