135
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Tofacitinib Inhibits STAT Phosphorylation and Matrix Metalloproteinase-3, -9 and -13 Production by C28/I2 Human Juvenile Chondrocytes

, , &
Pages 195-209 | Received 02 Mar 2022, Accepted 06 Sep 2022, Published online: 04 Oct 2022

References

  • Itoh Y. Metalloproteinases in rheumatoid arthritis. Potential therapeutic targets to improve current therapies. Prog Mol Biol Trans Sci. 2017;148:327–338.
  • Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46:183–196. doi:10.1016/j.immuni.2017.02.006
  • Veale DJ, Orr C, Fearon U. Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol. 2017;39:343–354. doi:10.1007/s00281-017-0633-1
  • Kim EK, Choi EJ. Compromised MAPK signaling in human diseases. An update. Arch Toxicol. 2015;89:867–882. doi:10.1007/s00204-015-1472-2
  • Malemud CJ. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskel Dis. 2018;10:117–127. doi:10.1177/1759720X18776224
  • Malemud CJ. Defective JAK-STAT pathway signaling contributes to autoimmune diseases. Curr Pharmacol Rep. 2018;4:358–366. doi:10.1007/s40495-018-0151-4
  • Malemud CJ, Stevenson S, Mehraban F, et al. The proteoglycan synthesis repertoire of rabbit chondrocytes maintained in Type II collagen gels. Osteoarthritis Cartilage. 1994;2(1):29–42. doi:10.1016/S1063-4584(05)80004-4
  • Gargiiulo S, Gamba G, Poli G, et al. Metalloproteinases and metalloproteinase inhibitors in age-related diseases. Curr Pharm Des. 2014;20:2993–3018. doi:10.2174/13816128113196660701
  • Malemud CJ. Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharmacol. 2019;165:33–40. doi:10.1016/j.bcp.2019.02.033
  • Troeberg L, Nagase H. Proteases involved in cartilage degradation in osteoarthritis. Biochim Biophys Acta. 2012;1824:133–145. doi:10.1016/j.bbapap.2011.06.020
  • Karouzakis E, Neidhart M, Gay RE, et al. Molecular and cellular basis of rheumatoid arthritis destruction. Immunol Lett. 2006;106:8–13. doi:10.1016/j.imlet.2006.04.011
  • Matten S, Zafar A, Moin S, et al. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta. 2016;455:161–171. doi:10.1016/j.cca.2016.02.010
  • Westra J, Limburg PC. p38 mitogen-activated protein kinase (MAPK) in rheumatoid arthritis. Mini Rev Med Chem. 2006;6(8):867–874. doi:10.2174/138955706777934982
  • Nakai R, Salisbury CM, Rosen H, et al. Ranking the selectivity of PubMed screening hits by activity-based protein profiling: MMP-13 as a case study. Bioorg Med Chem. 2009;17:1101–1108. doi:10.1016/j.bmc.2008.03.018
  • Georgiadis D, Yiotakis A. Specific targeting of metzincin family members with small molecule inhibitors: progress towards a multifarious challenge. Bioorg Med Chem. 2008;16:8781–8794. doi:10.1016/j.bmc.2008.08.058
  • Wada Y, Shimada K, Kimura T, et al. Novel p38 MAP kinase inhibitor R-130823 suppresses IL-6, IL-8 and MMP-13 production in spheroid culture of human synovial sarcoma cell line SW 982. Immunol Lett. 2005;101(1):50–59. doi:10.1016/j.imlet.2005.04.010
  • Medicherla S, Ma JY, Mangadu R, et al. A selective p38 alpha mitogen-activated protein kinase inhibitor reverses cartilage and bone destruction in mice with collagen-induced arthritis. J Pharmacol Exp Ther. 2006;318:132–141. doi:10.1124/jpet.105.098020
  • Hammaker D, Firestein GS. “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis. 2010;69(Suppl 1):77–82. doi:10.1136/ard.2009.119479
  • Malemud CJ, Pearlman E. Targeting JAK/STAT signaling pathway in inflammatory diseases. Curr Signal Transduct Ther. 2009;4:201–221. doi:10.2174/157436209789057467
  • Yamaoka K. Janus kinase inhibitors for rheumatoid arthritis. Curr Opin Chem Biol. 2016;32:29–33. doi:10.1016/j.cbpa.2016.03.006
  • Lee FB, Fleischmann R, Hall S, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370:2377–2386. doi:10.1056/NEJMoa1310476
  • Vyas D, O’Dell KM, Bandy JL, et al. Tofacitinib: the first Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother. 2013;47(11):1524–1531. doi:10.1177/1060028013512790
  • Shetty A, Hanson R, Korsten P, et al. Tocilizumab in the treatment of rheumatoid arthritis and beyond. Drug Des Devel Ther. 2014;8:349–364. doi:10.2147/DDDT.S41437
  • Meszaros EC, Dahoud W, Mesiano S, et al. Blockade of recombinant human IL-6 with tocilizumab suppresses matrix metalloproteinase-9 production in the C28/I2 immortalized human chondrocyte cell line. Integr Mol Med. 2015;2:304–310. doi:10.15761/IMM.1000158
  • Goldring MB. Culture of immortalized chondrocytes and their use as models of chondrocyte function. Methods Mol Med. 2004;100:37–52. doi:10.1385/1-59259-810-2:037
  • Hamamura K, Goldring MB, Yokota H. Involvement of p38 MAPK in regulation of MMP13 mRNA in chondrocytes in response to surviving stress to endoplasmic reticulum. Arch Oral Biol. 2009;54:279–286. doi:10.1016/j.archoralbio.2008.11.003
  • Baghirova S, Hughes BG, Hendzel MJ, et al. Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells. MethodsX. 2015;2:440–445. doi:10.1016/j.mex.2015.11.001
  • Ventura M, Mateo F, Serratosa L, et al. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol. 2010;42:1672–1680. doi:10.1016/j.biocel.2010.06.014
  • Liang Z-J, Zhuang H, Wang G-X, et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1β-stimulated human articular chondrocyte C28/I2 cells. Inflamm Res. 2012;61:503–509. doi:10.1007/s00011-012-0438-6
  • Pufe T, Harde V, Petersen W, et al. Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J Pathol. 2004;202:367–374. doi:10.1002/path.1527
  • Amini P, Wilson R, Wang J, et al. Progesterone and cAMP synergize to inhibit responsiveness of myometrial cells to pro-inflammatory/pro-labor stimuli. Mol Cell Endocrinol. 2019;479:1–11. doi:10.1016/j.mce.2018.08.005
  • Crowe AR, Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis. An integrated protocol. Bio Protoc. 2012;9:1–15.
  • Crowe A, Zheng W, Miller J, et al. Characterization of plasma membrane localization and phosphorylation status of organic anion transporting polypeptide (OATP) 1B1 c.521 T>C polymorphism. Pharm Res. 2019;36:101. doi:10.1007/s11095-019-2634-3
  • Kettle JG, Åstrand A, Catley M, et al. Inhibitors of JAK-family kinases: an update on the patent literature 2013–2015, part 1. Expert Opin Ther Pat. 2017;27:127–143. doi:10.1080/13543776.2017.1252753
  • Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: what can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;75:175–187. doi:10.1136/annrheumdis-2017-211555
  • El Jammal T, Gerfaud-Valentin M, Sève P, et al. Inhibition of JAK/STAT signaling in rheumatologic disorders: the expanding spectrum. Joint Bone Spine. 2012;87:119–129. doi:10.1016/j.jbspin.2019.09.005
  • Pérez-Baos S, Gratal P, Barrasa JL, et al. Inhibition of pSTAT1 by tofacitinib accounts for the early improvement of experimental chronic synovitis. J Inflamm. 2019;16:2. doi:10.1186/s12950-019-0206-2
  • Malemud CJ. Regulation of chondrocyte matrix metalloproteinase gene expression. In: Dhalla NS, Chakraborti S, editors. Role of Proteases in Cellular Dysfunction. UK: Springer Science; 2013:63–77.
  • Huang G, Chubinskya S, Liao W, et al. Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes. Osteoarthritis Cartilage. 2017;25:1505–1515. doi:10.1016/j.joca.2017.05.018
  • Chen W-P, Xiong Y, Shi Y-X, et al. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes. Int Immunopharmacol. 2014;19(1):174–177. doi:10.1016/j.intimp.2013.12.007
  • Soni S, Anand P, Padwad YS. MAPKAPK2; the master regulator of RNA-binding proteins modulate transcript stability and tumor progression. J Exp Clin Cancer Res. 2019;38:121. doi:10.1186/s13046-019-1115-1
  • Haller V, Nahidino P, Forster M, et al. An updated patent review of p38 kinase inhibitors (2014–2019). Expert Opin Ther Pat. 2020;30:453–466. doi:10.1080/13543776.2020.1749263
  • Milici AJ, Kudlacz EM, Audoly L, et al. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res Ther. 2008;10(1):R14. doi:10.1186/ar2365
  • Tanaka Y, Maeshima K, Yamaoka K. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis. Ann Rheum Dis. 2012;71(Suppl 2):i70–i74. doi:10.1136/annrheumdis-2011-200595
  • Dowty ME, Jesson MJ, Ghosh S, et al. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis. J Pharmacol Exp Ther. 2014;348:165–173. doi:10.1124/jpet.113.209304
  • Raychaudhuri S, Abria C, Harmany ZT, et al. Quantitative tracking of inflammatory activity at the peak and trough plasma levels of tofacitinib, a Janus kinase inhibitor, via in vivo 18F-FDG PET. Int J Rheum Dis. 2019;22:2165–2169. doi:10.1111/1756-185X.13732