82
Views
0
CrossRef citations to date
0
Altmetric
Review

New treatments in development for Pseudomonas aeruginosa infections in the lungs of individuals with cystic fibrosis

, , &
Pages 71-81 | Published online: 24 Oct 2014

References

  • Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev. 2010;23(2):299–323.
  • Grosse SD, Boyle CA, Botkin JR, et al. Newborn screening for cystic fibrosis: evaluation of benefits and risks and recommendations for state newborn screening programs. MMWR Recomm Rep. 2004;53(RR-13):1–36.
  • Southern KW, Munck A, Pollitt R, et al. A survey of newborn screening for cystic fibrosis in Europe. J Cyst Fibros. 2007;6(1):57–65.
  • Kumar V, Abbas AK, Fausto N, Mitchell RS. Robbins Basic Pathology. 8th ed. Philadelphia: Elsevier; 2007.
  • Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations – correlation with incidence data and application to screening. Hum Mutat. 2002;19(6):575–606.
  • Roomans GM. Pharmacological treatment of the basic defect in cystic fibrosis. Cell Biol Int. Epub May 8, 2014.
  • Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev. 1999;79(Suppl 1):S23–S45.
  • Mehta A. CFTR: more than just a chloride channel. Pediatr Pulmonol. 2005;39(4):292–298.
  • Quinton PM. Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet. 2008;372(9636):415–417.
  • Reisin IL, Prat AG, Abraham EH, et al. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem. 1994;269(32):20584–20591.
  • Schwiebert EM, Egan ME, Hwang TH, et al. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell. 1995;81(7):1063–1073.
  • Stutts MJ, Canessa CM, Olsen JC, et al. CFTR as a cAMP-dependent regulator of sodium channels. Science. 1995;269(5225):847–850.
  • Vankeerberghen A, Cuppens H, Cassiman JJ. The cystic fibrosis transmembrane conductance regulator: an intriguing protein with pleiotropic functions. J Cyst Fibros. 2002;1(1):13–29.
  • Matsui H, Grubb BR, Tarran R, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998;95(7):1005–1015.
  • Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med. 2007;58:157–170.
  • Matsui H, Wagner VE, Hill DB, et al. A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A. 2006;103(48):18131–18136.
  • Lethem MI, James SL, Marriott C. The role of mucous glycoproteins in the rheologic properties of cystic fibrosis sputum. Am Rev Respir Dis. 1990;142(5):1053–1058.
  • Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 1996;85(2):229–236.
  • Zabner J, Smith JJ, Karp PH, Widdicombe JH, Welsh MJ. Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro. Mol Cell. 1998;2(3):397–403.
  • Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997;88(4):553–560.
  • Pezzulo AA, Tang XX, Hoegger MJ, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487(7405):109–113.
  • Ratner D, Mueller C. Immune responses in cystic fibrosis: are they intrinsically defective? Am J Respir Cell Mol Biol. 2012;46(6):715–722.
  • Bayes HK, Bicknell S, MacGregor G, Evans TJ. T helper cell subsets specific for Pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis. PLoS One. 2014;9(2):e90263.
  • Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev. 2002;15(2):194–222.
  • Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2(9):1051–1060.
  • Harrison F. Microbial ecology of the cystic fibrosis lung. Microbiology. 2007;153(Pt 4):917–923.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193.
  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–745.
  • Worlitzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest. 2002;109(3):317–325.
  • Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003;168(8):918–951.
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–1322.
  • Romling U, Fiedler B, Bosshammer J, et al. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis. 1994;170(6):1616–1621.
  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–332.
  • Mogayzel PJ Jr, Naureckas ET, Robinson KA, et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187(7):680–689.
  • Høiby N. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med. 2011;9:32.
  • Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev. 2003;16(3):430–450.
  • Bryan LE, Haraphongse R, Van den Elzen HM. Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J Antibiot (Tokyo). 1976;29(7):743–753.
  • Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001;7(2):337–341.
  • Nordmann P, Guibert M. Extended-spectrum beta-lactamases in Pseudomonas aeruginosa. J Antimicrob Chemother. 1998;42(2):128–131.
  • Chen HY, Yuan M, Livermore DM. Mechanisms of resistance to beta-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J Med Microbiol. 1995;43(4):300–309.
  • Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(Pt 9):1133–1148.
  • Starkey M, Hickman JH, Ma L, et al. Pseudomonas aeruginosa Rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol. 2009;191(11):3492–3503.
  • Yahav D, Farbman L, Leibovici L, Paul M. Colistin: new lessons on an old antibiotic. Clin Microbiol Infect. 2012;18(1):18–29.
  • Bosso JA, Liptak CA, Seilheimer DK, Harrison GM. Toxicity of colistin in cystic fibrosis patients. DICP. 1991;25(11):1168–1170.
  • Brown RB, Sands M, Morris AB. Seizure propensity with imipenem. Arch Intern Med. 1990;150(7):1551.
  • Linden [webpage on the Internet]. Safety profile of meropenem: an updated review of over 6,000 patients treated with meropenem. Drug Saf. 2007;30(8):657–668.
  • Gilead Sciences. Phase 3 study of aztreonam for inhalation solution (AZLI) in a continuous alternating therapy regimen for the treatment of chronic Pseudomonas aeruginosa infection in patients with CF (AZLI CAT). Available from: http://clinicaltrials.gov/show/NCT01641822. NLM identifier:NCT01641822. Accessed August 21, 2014.
  • Novartis Pharmaceuticals. Tobramycin inhalation powder (TIP) administered once daily continuously versus TIP administered BID in 28 day on/28 day off cycles. Available from: http://clinicaltrials.gov/show/NCT02015663. NLM identifier:NCT02015663. Accessed August 21, 2014.
  • Döring G, Flume P, Heijerman H, Elborn JS Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012;11(6):461–479.
  • Proesmans M, Vermeulen F, Boulanger L, Verhaegen J, De Boeck K. Comparison of two treatment regimens for eradication of Pseudomonas aeruginosa infection in children with cystic fibrosis. J Cyst Fibros. 2013;12(1):29–34.
  • Taccetti G, Bianchini E, Cariani L, et al. Early antibiotic treatment for Pseudomonas aeruginosa eradication in patients with cystic fibrosis: a randomised multicentre study comparing two different protocols. Thorax. 2012;67(10):853–859.
  • Milla CE, Chmiel JF, Accurso FJ, et al. Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol. 2014;49(7):650–658.
  • KaloBios Pharmaceuticals. Study to evaluate the effect of KB001-A on time-to-need for antibiotic treatment. Available from: http://clinicaltrials.gov/show/NCT01695343. NLM identifier: NCT01695343. Accessed August 21, 2014.
  • Meers P, Neville M, Malinin V, et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother. 2008;61(4):859–868.
  • Okusanya OO, Bhavnani SM, Hammel J, et al. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother. 2009;53(9):3847–3854.
  • Clancy JP, Dupont L, Konstan MW, et al. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax. 2013;68(9):818–825.
  • Bilton D, Pressler T, Isabelle F, et al. Phase 3 efficacy and safety data from randomized, multicenter study of liposomal amikacin for inhalation (Arikace) compared with TOBI® in cystic fibrosis patients with chronic infection due to Pseudomonas aeruginosa [abstract]. Pediatr Pulmonol. 2013;48(S36):290.
  • CenterWatch. FDA lifts hold on Insmed’s Arikace. 2012. Available from: http://www.centerwatch.com/news-online/article/2785/fda-lifts-hold-on-insmeds-arikace#sthash.0ZMXjApN.dpbs. Accessed August 20, 2014.
  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest. 2007;117(4):877–888.
  • García-Contreras R, Peréz-Eretza B, Lira-Silva E, et al. Gallium induces the production of virulence factors in Pseudomonas aeruginosa. Pathog Dis. 2014;70(1):95–98.
  • Switzer B, Goss C, Abdalla M, Singh P, Britigan B. Gallium has potential as a new therapeutic agent for M. abscessus infections [abstract]. Pediatr Pulmonol. 2013;48(S36):334–335.
  • Kakiuchi T, Pham B, Lechuga-Ballesteros D, Patzer EJ. Bactericidal activity of anti-infective panaecin™ (gallium nitrate) on antibiotic resistant P. aeruginosa from clinical isolates and in sputum from CF patients [abstract]. Pediatr Pulmonol. 2008;43(S31):318.
  • Troung-Le V, Martin R, Ohtake S, Yee L, Patzer EJ, Lechuga-Ballesteros D. Intratracheal delivery of gallium results in higher local lung concentration and longer lung residence time compared to intravenous delivery in the rat [abstract]. Pediatr Pulmonol. 2009;44(S32):307–308.
  • Yee L, Adamcakova-Dodd A, Binuraj A, et al. Pharmacokinetics, acute inhalation toxicity, and bacterial activities of anti-infective Panaecin™ (formulated gallium nitrate) [abstract]. Pediatr Pulmonol. 2010;45(S33):351.
  • Halwani M, Yebio B, Suntres ZE, Alipour M, Azghani AO, Omri A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother. 2008;62(6):1291–1297.
  • Goss CH, Hornick DB, Aitken ML, et al. Phase 1 pharmacokinetic and safety study of intravenous Ganite™ (gallium nitrate) in CF [abstract]. Pediatr Pulmonol. 2012;47(S35):303.
  • Kollberg H, Carlander D, Olesen H, Wejåker PE, Johannesson M, Larsson A. Oral administration of specific yolk antibodies (IgY) may prevent Pseudomonas aeruginosa infections in patients with cystic fibrosis: a phase I feasibility study. Pediatr Pulmonol. 2003;35(6):433–440.
  • Nilsson E, Amini A, Wretlind B, Larsson A. Pseudomonas aeruginosa infections are prevented in cystic fibrosis patients by avian antibodies binding Pseudomonas aeruginosa flagellin. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;856(1–2):75–80.
  • Nilsson E, Kollberg H, Johannesson M, Wejåker PE, Carlander D, Larsson A. More than 10 years’ continuous oral treatment with specific immunoglobulin Y for the prevention of Pseudomonas aeruginosa infections: a case report. J Med Food. 2007;10(2):375–378.
  • Immunsystem. Anti-Pseudomonas IgY to prevent infections in cystic fibrosis (PseudIgY). Available from: http://clinicaltrials.gov/show/NCT00633191. NLM identifier:NCT00633191. Accessed August 21, 2014.
  • Mukoviszidose Institut. Efficacy study of IgY (antibody against Pseudomonas) in cystic fibrosis patients (PsAer-IgY). Available from: http://clinicaltrials.gov/show/NCT01455675. NLM identifier:NCT01455675. Accessed August 21, 2014.
  • Geller DE, Flume PA, Griffith DC, et al. Pharmacokinetics and safety of MP-376 (levofloxacin inhalation solution) in cystic fibrosis subjects. Antimicrob Agents Chemother. 2011;55(6):2636–2640.
  • Geller DE, Flume PA, Staab D, Fischer R, Loutit JS, Conrad DJ. Levofloxacin inhalation solution (MP-376) in patients with cystic fibrosis with Pseudomonas aeruginosa. Am J Respir Crit Care Med. 2011;183(11):1510–1516.
  • Mpex Pharmaceuticals. MP-376 (Aeroquin™, levofloxacin for inhalation) in patients with cystic fibrosis. Available from: http://clinicaltrials.gov/show/NCT01180634. NLM identifier:NCT01180634. Accessed August 21, 2014.
  • Mpex Pharmaceuticals. Trial of aeroquin versus tobramycin inhalation solution (TIS) in cystic fibrosis (CF) patients. Available from: http://clinicaltrials.gov/show/NCT01270347. NLM identifier:NCT01270347. Accessed September 10, 2014.
  • Stass H, Weimann B, Nagelschmitz J, Rolinck-Werninghaus C, Staab D. Tolerability and pharmacokinetic properties of ciprofloxacin dry powder for inhalation in patients with cystic fibrosis: a phase I, randomized, dose-escalation study. Clin Ther. 2013;35(10):1571–1581.
  • Stass H, Baumann-Noss S, Delesen H, et al. Pharmacokinetics of ciprofloxacin PulmoSphere inhalational powder. J Cyst Fibros. 2008;7:S26.
  • Dorkin H, Criollo M, Reimnitz P, Alder J, Hampel B. Randomized, double-blind, placebo-controlled, multicenter study to evaluate the safety and efficacy of inhaled ciprofloxacin compared with placebo in patients with cystic fibrosis – a phase IIB study of ciprofloxacin dry powder for inhalation (DPI) [abstract]. Pediatr Pulmonol. 2011;46(S43):296.
  • Zhanel GG, Chung P, Adam H, et al. Ceftolozane/tazobactam: a novel cephalosporin/beta-lactamase inhibitor combination with activity against multidrug-resistant Gram-negative bacilli. Drugs. 2014;74(1):31–51.
  • Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171–1175.
  • Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A. 2006;103(51):19484–19489.
  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000;407(6805):762–764.
  • Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–141.
  • Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75(1):39–48.
  • Kapoor R, Wadman MW, Dohm MT, Czyzewski AM, Spormann AM, Barron AE. Antimicrobial peptoids are effective against Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2011;55(6):3054–3057.
  • Pompilio A, Scocchi M, Pomponio S, et al. Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides. 2011;32(9):1807–1814.
  • Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–1557.
  • Nagant C, Pitts B, Nazmi K, et al. Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother. 2012;56(11):5698–5708.
  • Pompilio A, Crocetta V, Scocchi M, et al. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed alpha-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol. 2012;12:145.
  • Hirt H, Gorr SU. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(10):4903–4910.
  • de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2009;11(2):279–288.
  • Liu HB, Lee JH, Kim JS, Park S. Inhibitors of the Pseudomonas aeruginosa quorum-sensing regulator, QscR. Biotechnol Bioeng. 2010;106(1):119–126.
  • Zeng X, Liu X, Bian J, et al. Synergistic effect of 14-alpha-lipoyl andrographolide and various antibiotics on the formation of biofilms and production of exopolysaccharide and pyocyanin by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(6):3015–3017.
  • Packiavathy IA, Agilandeswari P, Musthafa KS, Pandian SK, Ravi AV. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int. 2012;45(1):85–92.
  • Husain FM, Ahmad I, Asif M, Tahseen Q. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci. 2013;38(5):835–844.
  • Murugan K, Sangeetha S, Kalyanasundaram VB, Al-Sohaibani S. In vitro and in silico screening for Andrographis paniculata quorum sensing mimics: new therapeutic leads for cystic fibrosis Pseudomonas aeruginosa biofilms. Plant Omics. 2013;6(5):340–346.
  • Bjarnsholt T, Jensen PØ, Rasmussen TB, et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology. 2005;151(Pt 12):3873–3880.
  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A. 2013;110(44):17981–17986.
  • Lu Q, Yu J, Yang X, et al. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing. Int J Antimicrob Agents. 2010;36(3):211–215.
  • AlgiPharma A phase IIB study of OligoG in subjects with cystic fibrosis (SMR-2984). Available from: http://clinicaltrials.gov/ct2/show/NCT02157922. NLM identifier:NCT02157922. Accessed August 21, 2014.
  • Powell LC, Sowedan A, Khan S, et al. The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms. Biofouling. 2013;29(4):413–421.
  • Powell LC, Pritchard MF, Emanuel C, et al. A nanoscale characterization of the interaction of a novel alginate oligomer with the cell surface and motility of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol. 2014;50(3):483–492.
  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559):1487.
  • Donnelly RF, McCarron PA, Cassidy CM, Elborn JS, Tunney MM. Delivery of photosensitisers and light through mucus: investigations into the potential use of photodynamic therapy for treatment of Pseudomonas aeruginosa cystic fibrosis pulmonary infection. J Control Release. 2007;117(2):217–226.