230
Views
0
CrossRef citations to date
0
Altmetric
Review

Pompe disease: clinical perspectives

&
Pages 1-10 | Published online: 28 Dec 2016

References

  • Hirschhorn R, Reuser AJJ. Glycogen storage disease type II: acid α-glucosidase (acid maltase) deficiency. In: Scriver CR, Beaudet AL, Valle D, Sly WS, editors. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw Hill; 2001:3389–3420.
  • Kroos M, Hoogeveen-Westerveld M, Michelakakis H, et al. Update of the Pompe disease mutation database with 60 novel sequence variants and additional studies on functional effect of 34 previous reported variants. Hum Mut. 2012;33(8):1161–1165.
  • Moreland RJ, Xioying J, Jin X, Zhang K, et al. Lysosomal acid α-glucosidase consists of four different peptides processed from a single chain precursor. J Biol Chem. 2005;280(8):6780–6791.
  • Kroos MA, Mullaart RA, Van Vliet L, Pomponio RJ, Amartino H, Kolodny EH. p.[C576S: E689K]: pathogenic combination or polymorphism in Pompe disease? Eur J Hum Genet. 2008;16(8):875–879.
  • Huie ML, Hirschhorn R, Chen AS, Martiniuk F, Zhong N. Mutation at the catalytic site (M519V) in glycogen storage disease type II (Pompe disease). Hum Mutat. 1994;4(4):291–293.
  • Boerkoel CF, Exelbert R, Nicastri C, et al. Leaky splicing mutation in the acid maltase gene is associated with delayed onset of glycogenosis type II. Am J Hum Genet. 1995;56:887–897.
  • Pompe Center, Erasmus Medical Center, Rotterdam, NL. Available from: www.pompecenter.nl. Accessed on April 20, 2016.
  • Askanas V, Engel WK, DiMauro S, Brooks BR, Mehler M. Adult onset acid maltase deficiency-morphologic and biochemical abnormalities reproduced in cultured muscle. N Engl J Med 1976;294:573–578.
  • Griffen JL. Infantile acid maltase deficiency. I. Muscle fiber destruction after lysosomal rupture. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;45(1):23–36.
  • Shea L, Raben N. Autophagy in skeletal muscle: implications for Pompe disease. Int J Clin Pharmacol Ther. 2009;47(Suppl 1):S42–S47.
  • Raben N, Baum R, Schreiner C, et al. When more is less. Excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease. Autophagy. 2009;5(1):111–113.
  • Lim JA, Li L, Kakhlon O, Myerowitz R, Raben N. Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Autophagy. 2015;11(2):385–402.
  • Falk DJ, Todd AG, Lee S, et al. Peripheral nerve and neuromuscular junction pathology in Pompe disease. Hum Mol Genet. 2015;24(3):625–636.
  • Hobson-Webb LD, Austin SL, Jain S, Case LE, Greene K, Kishnani PS. Small-fiber neuropathy in Pompe disease: first reported cases and prospective screening of a clinic cohort. Am J Case Rep. 2015;16:196–201.
  • Byrne BJ, Kishnani PS, Case LE, et al. Pompe disease: design, method and early findings from the Pompe Registry. Mol Genet Metab. 2011;103(1):1–11.
  • Chien YH, Lee NC, Huang HJ, Thurberg BL, Tsai FJ, Hwu WL. Late-onset Pompe disease: early detection and early treatment initiation enabled by newborn screening. J Pediatr. 2011;158:1023–1027.
  • Shieh JJ, Wang LY, Lin CY. Point mutation in Pompe disease in Chinese. J Inherit Metab Dis. 1994;17(1):145–148.
  • Kumamoto S, Katatuchi S, Nakamura K, et al. High frequency of acid alpha glucosidase pseudodeficiency complicates newborn screening for glycogen storage disease in the Japanese population. Mol Genet Metab. 2009;97(3):190–195.
  • Labrousse P, Chien YH, Pomponio RJ, et al. Genetic heterozygosity and pseudodeficiency in the Pompe disease newborn screening pilot program. Mol Genet Metab. 2010;99(4):379–383.
  • Hagemans M, Winkel L, Van Doorn P, et al. Clinical manifestations and natural course of late-onset Pompe disease in 54 Dutch patients. Brain. 2005;128:671–677.
  • Amartino H, Panceira D, Pomponio RJ, et al. Two clinical forms of glycogen-storage disease type II in two generations of the same family. Clin Genet. 2006;69(2):187–188.
  • Kroos MA, Pomponio RJ, Hagermans ML. Broad spectrum of Pompe disease in patients with the same c.-32-13 T>G haplotype. Neurology. 2007;68(2):110–115.
  • Van den Hout HM, Hop W, van Diggelen OP, et al. The natural course of Pompe’s disease: 20 original cases compared to 133 cases from the literature. Pediatrics. 2003;112(2):332–340.
  • Bali DS, Tolun AA, Goldstein JL, Dai J, Kishnani PS. Molecular analysis and molecular processing in late-onset Pompe disease patients with low levels of acid α-glucosidase activity. Muscle Nerve. 2011;43(5):665–670.
  • Winchester B, Bali DS, Bodamer OA, et al; Pompe Disease Diagnostic Working Group. Methods for a prompt and reliable laboratory diagnosis of Pompe disease: report from an international consensus meeting. Mol Genet Metab. 2008;93(3):275–281.
  • American Association of Neuromuscular and Electrodiagnostic Medicine. Diagnostic criteria for late-onset (childhood and adult) Pompe disease. Muscle Nerve. 2009;40:149–160.
  • Vissing J, Lukacs Z, Straub V. Diagnosis of Pompe disease: muscle biopsy vs blood-based assays. JAMA Neurol. 2013;70(7):923–927.
  • Pichiecchio A, Ugetti C, Ravaglia S, et al. Muscle MRI in adult-onset acid maltase deficiency. Neuromuscl Disord. 2004;14:51–55.
  • Carlier PG, Azzabou N, deSousa PL, et al. Skeletal muscle quantitative nuclear magnetic resonance imaging follow up of adult Pompe patients. J Inherit Metab Dis. 2015;38(3):565–572.
  • Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [alpha]-glucosidase: major benefits in infantile-onset Pompe disease. Neurology. 2007;68(2):99–109.
  • Nicolino M, Byrne B, Wraith JE, et al. Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced Pompe disease. Genet Med. 2009;11(3):210–219.
  • Van der Ploeg AT, Clemens PR, Corzo D, et al. A randomized study of alglucosidase alpha in late-onset Pompe’s disease. N Engl J Med. 2010;362:1396–1406.
  • Kishnani PS, Goldenberg PC, DeArmey SL, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99:26–33.
  • Mendelsohn NJ, Messenger YH, Rosenberg AS, Kishnani PS. Elimination of antibodies to recombinant enzyme in Pompe disease. N Engl J Med. 2009;360(2):194–195.
  • Messinger YH, Mendelsohn NJ, Rhead W, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012:14(1);135–142.
  • Banugaria SG, Prater SN, Ng YK, et al. The impact of antibody on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile onset Pompe disease. Genet Med. 2011;13(8):729–737.
  • Patel TT, Banugaria SG, Case LE, Wenninger S, Schoser B, Kishnani PS. The impact of antibody in late-onset Pompe disease: a case series and literature review. Mol Genet Metab. 2012;106(3):301–309.
  • Banugaria SG, Prater SN, McGann JD, et al. Bortezomib in the rapid reduction of high antibody titers in disorders treated with therapeutic protein: lessons learned from Pompe disease. Genet Med. 2013;15(2):23–31.
  • Stenger EO, Kazi Z, Lisi E, Gambello M, Kishnani PS. Immune tolerance strategies in siblings with infantile Pompe disease – advantages for a preemptive approach to high-sustained antibody titers. Molec Genet Metab Rep. 2012;4:30–34.
  • Broomfield A, Fletcher J, Davison J, et al. Response of 33 UK patients with infantile-onset Pompe disease. J Inherit Metab Dis. 2016;39(2):261–271.
  • Anderson LJ, Henley W, Wyatt KM, et al. Effectiveness of enzyme replacement therapy in patients with late-onset Pompe disease: results from the NCS-LSD cohort study. J Inherit Metab Dis. 2014;37(6):945–952.
  • Van der Meijden JC, Gungor D, Kruijshaar ME, Muir AD, Broekgaarden HA, Van der Ploeg AT. Ten years of the International Pompe survey: patient reported outcomes as a reliable tool for studying treated and untreated children and adults with non-classic Pompe disease. J Inherit Metab Dis. 2015;38(3):495–503.
  • Slonim AE, Coleman RA, McElligot MA, et al. Improvement of muscle function in acid maltase deficiency by high-protein therapy. Neurology. 1983;33(1):34–38.
  • Bodamer OA, Halliday D, Leonard JV. Effect of l-alanine supplements in late-onset glycogen storage disease type II. Neurology. 2000;55(5):710–712.
  • Calcedo R, Wilson JM. Humoral immune response in AAV. Front Immunol. 2013;4:341.
  • ClinicalTrials.gov. US National Institute of Health. www.clinicaltrials.gov.
  • Smith BK, Collins SW, Conlon TJ, et al. A phase I/II trial of adeno-associated virus mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilation outcomes. Hum Gene Ther. 2013;24(6):630–640.
  • Corti M, Elder ME, Falk, DJ, et al. B-cell depletion is protective against anti-AAV capsid immune response: a human case study. Mol Ther Methods Clin Dev. 2014;1. pii:14033.
  • Kobayashi H, Carbonaro D, Pepper K, et al. Neonatal gene therapy of MPS I mice by intravenous injection of a lentiviral vector. Mol Ther. 2005;11:776–789.
  • Kyosen SO, Iizuka S, Kobayashi H, et al. Neonatal gene transfer using lentiviral vector for murine Pompe disease: long-term expression and glycogen production. Gene Ther. 2010;17:521–530.
  • Van Til NP, Stok M, Aerts H, et al. Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. Blood. 2010;115(26):5329–5337.
  • Douillard-Guilloux G, Raben N, Takikita S. Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease. Hum Mol Genet. 2010;19(4):684–696.
  • Ghosh P, Griffith J, Gueze HJ, Kornfeld S. Mammalian GGA’s act together to sort mannose-6-phosphate receptors. J Cell Biol. 2003;163(4):755–766.
  • Zhu Y, Jiang JL, Gumlaw PK, et al. Glycoengineered acid alpha-glucosidase with improved efficiency at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther. 2009;17(6):954–963.
  • Safety and efficacy evaluation of repeat NeoGAA dosing in late-onset Pompe disease (NCT01898364). Available from: www.clinicaltrials.gov. Accessed September 15, 2015.
  • Maga JA, Zhou J, Kambampati R, et al. Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in Pompe mice. J Biol Chem. 2013:288(3);1428–1438.
  • Byrne B, Barohn R, Barshop B, Bratkovic D, Desnuelle C, Henderson R. Lysosomal Disease Network WORLD Symposium 2014; February 10–14, 2014; San Diego, CA.
  • Okumiya T, Kroos MA, Vliet LV, Takeuchi H, Van der Ploeg AT, Reuser AJ. Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II. Mol Genet Metab. 2007;90(1):49–57.
  • Parenti G, Zuppaldi A, Pittis MG, et al. Pharmacological enhancement of mutated α-glucosidase activity in fibroblasts from patients with Pompe disease. Mol Ther. 2007;15(3):508–514.
  • Tajima Y, Saito S, Ohno K, Tsukimura T, Tsujino S, Sakuraba H. Biochemical and structural study on a S529V mutant acid α-glucosidase responsive to pharmacologic chaperones. J Hum Genet. 2011;56(6):440–446.
  • Flanagan JJ, Rossi B, Tang K, et al. The pharmacologic chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid-alpha glucosidase. Hum Mutat. 2009;30(12):1683–1692.
  • Khanna R, Powe AC, Lun Y, et al. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease. PLoS One. 2014;9(7):e102092.
  • Adera M, Boudes P, Bragat A. Lysosomal Disease Network, WORLD Symposium; February 18–18, 2011; Las Vegas, NV.
  • Watson MS, Mann MY, Lloyd-Puryear MA, Rinaldo P, Howell RR. Newborn screening: toward a uniform panel and system. Genet Med. 2006;8:1S–252S.
  • Marsden D, Levy H. Newborn screening of lysosomal storage disorders. Clin Chem. 2010;56(7):1071–1079.
  • Gelb MH, Turecek F, Scott CR, Chamoles NA. Direct multiples assay of enzymes in dried blood spots by tandem mass spectrometry for newborn screening of lysosomal storage disorders. J Inherit Metab Dis. 2006;29:397–404.
  • Umapatysivam K, Whittle AM, Ranieri E, et al. Determination of acid α-glucosidase protein: evaluation as a screening marker for Pompe disease and other lysosomal storage disorders. Clin Chem. 2000;46(9):1318–1325.
  • Millington DS, Sista R, Eckhardt A et al. Digital microfluidics: a future technology in the newborn screening laboratory? Semin Perinatol. 2010;34(2):163–169.
  • Chien YH, Lee NC, Thurberg BL, et al. Pompe disease in infants: improving prognosis by newborn screening and early intervention. Pediatrics. 2009;124(6):e1116–e1125.
  • Chien YH, Lee NC, Chen CA, et al. Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth. J Pediatr. 2015;166(4):985–991.
  • Chien YH, Lee NC, Huang HJ, Thurberg BL, Tsai FJ, Hwu WL. Later-onset Pompe disease: early detection and early treatment initiation enabled by newborn screening. J Pediatr. 2011;158(6):1023–1027.
  • Hopkins PV, Campbell C, Klug T, Rogers S, Raeburn-Miller J, Kiesling J. Lysosomal storage disorder screening implementation: findings from the first 6 months of full population pilot testing in Missouri. J Pediatr. 2015;166(7):172–177.
  • Wittmann J, Karg E, Turi S, et al. Newborn screening for lysosomal storage disorders in Hungary. JIMD Rep. 2012;6:117–125.