178
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Structure–Function Correlation Using OCT Angiography And Microperimetry In Diabetic Retinopathy

, &
Pages 2181-2188 | Published online: 11 Nov 2019

References

  • Arend O, Wolf S, Jung F, et al. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol. 1991;75(9):514–518. doi:10.1136/bjo.75.9.514
  • Hwang TS, Zhang M, Bhavsar K, et al. Visualization of 3 distinct retinal plexuses by projection-resolved optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134(12):1411–1419. doi:10.1001/jamaophthalmol.2016.4272
  • Carnevali A, Sacconi R, Corbelli E, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695–702. doi:10.1007/s00592-017-0996-8
  • Yasin Alibhai A, Moult EM, Shahzad R, et al. Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy. Ophthalmol Retina. 2018;2(5):418–427. doi:10.1016/j.oret.2017.09.011
  • Hasegawa N, Nozaki M, Takase N, Yoshida M, Ogura Y. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Invest Ophthalmol Vis Sci. 2016;57:348–355.
  • Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160:35–44. doi:10.1016/j.ajo.2015.04.021
  • Couturier A, Mané V, Bonnin S, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina. 2015;35:2384–2391. doi:10.1097/IAE.0000000000000859
  • Agemy SA, Scripsema NK, Shah CM, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normal and diabetic retinopathy patients. Retina. 2015;35(11):2353–2363. doi:10.1097/IAE.0000000000000862
  • Sim DA, Keane PA, Fung S, et al. Quantitative analysis of diabetic macular ischemia using optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(1):417–423. doi:10.1167/iovs.13-12677
  • Kube T, Schmidt S, Toonen F, Kirchhof B, Wolf S. Fixation stability and macular light sensitivity in patients with diabetic maculopathy: a microperimetric study with a scanning laser ophthalmoscope. Ophthalmologica. 2005;219:16–20. doi:10.1159/000081777
  • Midena E, Vujosevic S. Microperimetry in diabetic retinopathy. Saudi J Ophthalmol. 2011;25(2):131–135. doi:10.1016/j.sjopt.2011.01.010
  • Vujosevic S, Midena E, Pilotto E, Radin PP, Chiesa L, Cavarzeran F. Diabetic macular edema: correlation between microperimetry and optical coherence tomography findings. Invest Ophthalmol Vis Sci. 2006;47(7):3044–3051. doi:10.1167/iovs.05-1141
  • Vujosevic S, Torresin T, Berton M, Bini S, Convento E, Midena E. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities. Am J Ophthalmol. 2017;181:149–155. doi:10.1016/j.ajo.2017.06.026
  • Midena E, Bini S. Multimodal retinal imaging of diabetic macular edema: toward new paradigms of pathophysiology. Graefes Arch Clin Exp Ophthalmol. 2016;254(9):1661–1668. doi:10.1007/s00417-016-3361-7
  • Roh M, Laíns I, Shin HJ, et al. Microperimetry in age-related macular degeneration: association with macular morphology assessed by optical coherence tomography. Br J Ophthalmol. 2019. pii:bjophthalmol-2018-313316. doi:10.1136/bjophthalmol-2018-313316
  • Csaky KG, Patel PJ, Sepah YJ, et al. Microperimetry for geographic atrophy secondary to age-related macular degeneration. Surv Ophthalmol. 2019;64(3):353–364. pii:S0039-6257(18)30157-7. doi:10.1016/j.survophthal.2019.01.014
  • Barboni MTS, Récsán Z, Szepessy Z, et al. Preliminary findings on the optimization of visual performance in patients with age-related macular degeneration using biofeedback training. Appl Psychophysiol Biofeedback. 2019;44(1):61–70. doi:10.1007/s10484-018-9423-3
  • Welker SG, Pfau M, Heinemann M, Schmitz-Valckenberg S, Holz FG, Finger RP. Retest reliability of mesopic and dark-adapted microperimetry in patients with intermediate age-related macular degeneration and age-matched controls. Invest Ophthalmol Vis Sci. 2018;59(4):152–159. doi:10.1167/iovs.18-23878
  • Vujosevic S, Pucci P, Casciano M, et al. Long-term longitudinal modifications in mesopic microperimetry in early and intermediate age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2017;255(2):301–309. doi:10.1007/s00417-016-3466-z
  • Reinsberg M, Hilgers RD, Lüdeke I, et al. Testing the clinical value of multifocal electroretinography and microperimetry and the effects of intravitreal therapy with ranibizumab on macular function in the course of wet age-related macular degeneration: a 1-year prospective study. Clin Ophthalmol. 2017;11:621–629. doi:10.2147/OPTH.S123513
  • Chiang WY, Lee JJ, Chen YH, et al. Fixation behavior in macular dystrophy assessed by microperimetry. Graefes Arch Clin Exp Ophthalmol. 2018;256(8):1403–1410. doi:10.1007/s00417-018-4006-9
  • Viana KÍ, Messias A, Siqueira RC, Rodrigues MW, Jorge R. Structure-functional correlation using adaptive optics, OCT, and microperimetry in a case of occult macular dystrophy. Arq Bras Oftalmol. 2017;80(2):118–121. doi:10.5935/0004-2749.20170028
  • Battaglia Parodi M, Castellino N, Iacono P, et al. Microperimetry in best vitelliform macular dystrophy. Retina. 2018;38(4):841–848. doi:10.1097/IAE.0000000000001600
  • Alzaben Z, Cardona G, Zapata MA, Zaben A. Interocular asymmetry in choroidal thickness and retinal sensitivity in high myopia. Retina. 2018;38(8):1620–1628. doi:10.1097/IAE.0000000000001756
  • Raman R, Damkondwar D, Neriyanuri S, Sharma T. Microperimetry biofeedback training in a patient with bilateral myopic macular degeneration with central scotoma. Indian J Ophthalmol. 2015;63(6):534–536. doi:10.4103/0301-4738.162609
  • Parravano M, Oddone F, Giorno P, et al. Influence of macular choroidal thickness on visual function in highly myopic eyes. Ophthalmic Res. 2014;52(2):97–101. doi:10.1159/000362880
  • Khadamy J, Abri Aghdam K, Falavarjani KG. An update on optical coherence tomography angiography in diabetic retinopathy. J Ophthalmic Vis Res. 2018;13(4):487–497. doi:10.4103/jovr.jovr_57_18
  • Kulikov AN, Maltsev DS, Burnasheva MA. Improved analysis of foveal avascular zone area with optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2018;256(12):2293–2299. doi:10.1007/s00417-018-4139-x
  • Liu L, Gao J, Bao W, et al. Analysis of foveal microvascular abnormalities in diabetic retinopathy using optical coherence tomography angiography with projection artifact removal. J Ophthalmol. 2018;18(2018):3926745.
  • De Carlo TE, Chin AT, Bonini Filho MA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11):2364–2370. doi:10.1097/IAE.0000000000000882
  • Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eye evaluated by en face optical coherence tomography angiography. Retina. 2015;35(11):2377–2383. doi:10.1097/IAE.0000000000000849
  • La Mantia A, Kurt RA, Mejor S, et al. Comparing fundus fluorescein angiography and swept-source optical coherence tomography angiography in the evaluation of diabetic macular perfusion. Retina. 2019;39(5):926–937. doi:10.1097/IAE.0000000000002045
  • Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(1):190–196. doi:10.1167/iovs.16-20531
  • Sim DA, Keane PA, Zarranz-Ventura J, et al. The effects of macular ischemia on visual acuity in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2013;54(3):2353–2360. doi:10.1167/iovs.12-11103
  • Sambhav K, Abu-Amero KK, Chalam KV. Deep capillary macular perfusion indices obtained with OCT angiography correlate with degree of non proliferative diabetic retinopathy. Eur J Ophthalmol. 2017;27(6):716–729. doi:10.5301/ejo.5000948
  • Gomez-Ulla F, Wolf S, Reim M. Medición del fluido sanguineo retiniano en la diabetes por medio de un sistema de análisis de imágenes aplicado a la videoangiografía fluoresceínica. Measurement of retinal flow in diabetes by image analysis system applied to fluorescein videoangiography. Studium Ophthalmologicum. 1987;3:13–19.
  • Pearce E, Sivaprasad S, Chong NV. Factors affecting reading speed in patients with diabetic macular edema treated with laser photocoagulation. PLoS ONE. 2014;9(9):e105696. doi:10.1371/journal.pone.0105696
  • Karacorlu M, Ozdemir H, Senturk F, Karacorlu SA, Uysal O. Macular function after intravitreal triamcinolone acetonide injection for diabetic macular oedema. Acta Ophthalmol. 2010;88(5):558–563. doi:10.1111/j.1755-3768.2008.01497.x
  • Mathew R, Pearce E, Muniraju R, Abdel-Hay A, Sivaprasad S. Monthly OCT monitoring of Ozurdex for macular oedema related to retinal vascular diseases: re-treatment strategy (OCTOME Report 1). Eye (Lond). 2014;28(3):318–326. doi:10.1038/eye.2013.287
  • Kothari AR, Raman RP, Sharma T, Gupta M, Laxmi G. Is there a correlation between structural alterations and retinal sensitivity in morphological patterns of diabetic macular edema? Indian J Ophthalmol. 2013;61(5):230–232. doi:10.4103/0301-4738.97081
  • De Benedetto U, Querques G, Lattanzio R, et al. Macular dysfunction is common in both type 1 and type 2 diabetic patients without macular edema. Retina. 2014;34(11):2171–2177. doi:10.1097/IAE.0000000000000205
  • Verma A, Rani PK, Raman R, et al. Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabeticretinopathy. Eye (Lond). 2009;23(9):1824–1830. doi:10.1038/eye.2009.184
  • Nittala MG, Gella L, Raman R, Sharma T. Measuring retinal sensitivity with the microperimeter in patients with diabetes. Retina. 2012;32(7):1302–1309. doi:10.1097/IAE.0b013e3182365a24
  • Al Shafaee M, Shenoy R, Bialasiewicz AA, Ganguly SS, Bhargava K. Macular function in prediabetic and diabetic Omani adults: a microperimetric evaluation. Eur J Ophthalmol. 2011;21(6):771–776. doi:10.5301/EJO.2011.6328
  • Yang XL, Zou HD, Xu X. Correlation of retinal sensitivity, visual acuity and central macular thickness in different types of diabetic macular edema. Zhonghua Yan Ke Za Zhi. 2013;49(12):1081–1088.
  • Okada K, Yamamoto S, Mizunoya S, Hoshino A, Arai M, Takatsuna Y. Correlation of retinal sensitivity measured with fundus-related microperimetry to visual acuity and retinal thickness in eyes with diabetic macular edema. Eye (Lond). 2006;20(7):805–809. doi:10.1038/sj.eye.6702014
  • Shen Y, Liu K, Xu X. Correlation between visual function and photoreceptor integrity in diabetic macular edema: spectral-domain optical coherence tomography. Curr Eye Res. 2016;41(3):391–399. doi:10.3109/02713683.2015.1019003
  • Shen Y, Xu X, Liu K. Fundus autofluorescence characteristics in patients with diabetic macular edema. Chin Med J (Engl). 2014;127(8):1423–1428.
  • Scarinci F, Jampol LM, Linsenmeier RA, Fawzi AA. Association of diabetic macular nonperfusion with outer retinal disruption on optical coherence tomography. JAMA Ophthalmol. 2015;133(9):1036–1044. doi:10.1001/jamaophthalmol.2015.2183
  • Raman R, Santhanam K, Gella L, Pal BP, Sharma T. Morphological and functional outcomes following modified early treatment diabetic retinopathy study laser in diabetic macular edema. Oman J Ophthalmol. 2015;8(2):92–96. doi:10.4103/0974-620X.159252
  • Lorusso M, Milano V, Nikolopoulou E, et al. Panretinal photocoagulation does not change macular perfusion in eyes with proliferative diabetic retinopathy. Ophthalmic Surg Lasers Imaging Retina. 2019;50(3):174–178. doi:10.3928/23258160-20190301-07