103
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Epithelial Remodeling Following Phacoemulsification in Diabetic Patients Using Anterior-Segment Optical Coherence Tomography: A Comparative Study

ORCID Icon, , & ORCID Icon
Pages 2515-2523 | Published online: 26 Aug 2020

References

  • Jaycock P, Johnston R, Taylor H, et al. The cataract national dataset electronic multi-centre audit of 55 567 operations: updating benchmark standards of care in the United Kingdom and internationally. Eye. 2009;23(1):38–49. doi:10.1038/sj.eye.6703015
  • Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for corneal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996;22(8):1079–1084. doi:10.1016/S0886-3350(96)80121-0
  • Walkow T, Anders N, Klebe S. Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg. 2000;26(5):727–732. doi:10.1016/S0886-3350(99)00462-9
  • Reuschel A, Bogatsch H, Oertel N, Wiedemann R. Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefes Arch Clin Exp Ophthalmol. 2015;253(5):745–752. doi:10.1007/s00417-015-2934-1
  • Reuschel A, Bogatsch H, Barth T, Wiedemann R. Comparison of endothelial changes and power settings between torsional and longitudinal phacoemulsification. J Cataract Refract Surg. 2010;36(11):1855–1861. doi:10.1016/j.jcrs.2010.06.060
  • Kanellopoulos A, Asimellis G. Corneal epithelial remodeling following cataract surgery: three-dimensional investigation with anterior-segment optical coherence tomography. J Refract Surg. 2014;30(5):348–353. doi:10.3928/1081597X-20140416-04
  • Zheng T, Yang J, Xu J, He W, Lu Y. Near-term analysis of corneal epithelial thickness after cataract surgery and its correlation with epithelial cell changes and visual acuity. J Cataract Refract Surg. 2016;42(3):420–426. doi:10.1016/j.jcrs.2015.09.029
  • Simpson T, Fonn D. Optical coherence tomography of the anterior segment. Ocular Surface. 2008;6(3):117–127. doi:10.1016/S1542-0124(12)70280-X
  • Kanellopoulos AJ, Asimellis G. In vivo three-dimensional corneal epithelium imaging in normal eyes by anterior segment optical coherence tomography: a clinical reference study. Cornea. 2013;32(11):1493–1498. doi:10.1097/ICO.0b013e3182a15cee
  • Francoz M, Karamoko I, Baudouin C, Labbe A. Ocular surface epithelial thickness evaluation with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(12):9116–9123. doi:10.1167/iovs.11-7988g
  • Wang J, Aquavella J, Palakuru J, Chung S. Repeated measurements of dynamic tear distribution on the ocular surface after instillation of artificial tears. Invest Ophthalmol Vis Sci. 2006;47(8):3325–3329. doi:10.1167/iovs.06-0055
  • Feng Y, Varikooty J, Simpson T. Diurnal variation of corneal and corneal epithelial thickness measured using optical coherence tomography. Cornea. 2001;20(5):480–483. doi:10.1097/00003226-200107000-00008
  • Kanellopoulos A, Asimellis G. Introduction of quantitative and qualitative cornea optical coherence tomography findings induced by collagen cross-linking for keratoconus: a novel effect measurement benchmark. Clin Ophthalmol. 2013;7:329–335.
  • Kanellopoulos A, Aslanides I, Asimellis G. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL: is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol. 2012;6:789–800.
  • Hatipoglu E, Ozkok A, Niyazoglu M, et al. Evaluation of corneal epithelial thickness in cases with type 2 diabetes mellitus. Transplantation Immunology. 2014. Insulin Signaling; Islet Biology; Pathophysiology/Complications.
  • Calvo‐Maroto A, Cerviño A, Perez‐Cambrodí R, García‐Lázaro S, Sanchis‐Gimeno J. Quantitative corneal anatomy: evaluation of the effect of diabetes duration on the endothelial cell density and corneal thickness. Ophthalmic Physiol Opt. 2015;35(3):293–298. doi:10.1111/opo.12191
  • Rosenberg M, Tervo T, Immonen I, Müller L, Grönhagen–Riska C, Vesaluoma M. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41(10):2915–2921.
  • Hamilton A, Ulbig M, Polkinghorne P. Epidemiology of diabetic retinopathy. BMJ Open Diabetes Res Care. 1996;1–15.
  • Leske MC, Chylack LT, Sperduto R, Khu P, Wu S-Y, McCarthy D. Evaluation of a lens opacities classification system. Arch Ophthalmol. 1988;106(3):327. doi:10.1001/archopht.1988.01060130353019
  • Ishikawa S, Kato N, Takeuchi M. Quantitative evaluation of corneal epithelial edema after cataract surgery using corneal densitometry: a prospective study. BMC Ophthalmol. 2018;18(1):334. doi:10.1186/s12886-018-0998-5
  • Calabuig-Goena M, Lopez-Miguel A, Marques-Fernandez V, Coco-Martın M, Iglesias-Cortinas D, Maldonado M. Early changes in corneal epithelial thickness after cataract surgery – Pilot Study. Curr Eye Res. 2016;41(3):311–317. doi:10.3109/02713683.2015.1014565
  • Morikubo S, Takamura Y, Kubo E, Tsuzuki S, Akagi Y. Corneal changes after small-incision cataract surgery in patients with diabetes mellitus. Arch Ophthalmol. 2004;122(7):966–969. doi:10.1001/archopht.122.7.966
  • Mathew P, David S, Thomas N. Endothelial cell loss and central corneal thickness in patients with and without diabetes after manual small incision cataract surgery. Cornea. 2011;30(4):424–428. doi:10.1097/ICO.0b013e3181eadb4b
  • Han M, Song W, Conti T, et al. Visual acuity outcomes after cataract extraction with intraocular lens implantation in eyes with diabetic retinopathy. Ophthalmology. 2020;4(4):351–360. doi:10.1016/j.oret.2019.12.018
  • Liu L, Herrinton L, Alexeeff S, et al. Visual outcomes after cataract surgery in patients with type 2 diabetes. J Cataract Refract Surg. 2019;45(4):404–413. doi:10.1016/j.jcrs.2018.11.002