314
Views
17
CrossRef citations to date
0
Altmetric
Review

Antioxidants for the Treatment of Retinal Disease: Summary of Recent Evidence

, ORCID Icon &
Pages 1621-1628 | Published online: 19 Apr 2021

References

  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 2015. doi:10.1093/acprof:oso/9780198717478.001.0001
  • Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med. 2012;33(4):399–417. doi:10.1016/j.mam.2012.03.009
  • Roehlecke C, Schumann U, Ader M, Knels L, Funk RHW. Influence of blue light on photoreceptors in a live retinal explant system. Mol Vis. 2011;17:876–884.
  • Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, Alsalamat HA, Bashatwah RM. Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian J Med. 2018;50(3):193–201. doi:10.5152/eurasianjmed.2018.17397
  • Zhao L, Feng Z, Zou X, Cao K, Xu J, Liu J. Aging leads to elevation of O-GlcNAcylation and disruption of mitochondrial homeostasis in retina. Oxid Med Cell Longev. 2014;2014:1–11. doi:10.1155/2014/425705
  • Kaur C. Hypoxia-ischemia and retinal ganglion cell damage. Clini Ophthalmol. 2008;879. doi:10.2147/opth.s3361
  • Gil J, Almeida S, Oliveira CR, Rego AC. Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis. Free Radic Biol Med. 2003;35(11):1500–1514. doi:10.1016/j.freeradbiomed.2003.08.022
  • Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res Rev Mutat Res. 2004. doi:10.1016/j.mrrev.2003.11.001
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. doi:10.1016/j.biocel.2006.07.001
  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95. doi:10.1152/physrev.00018.2001
  • Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci. 2018;63(1):68–78. doi:10.1016/j.advms.2017.05.005
  • Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5(35):27986–28006. doi:10.1039/c4ra13315c
  • He Y, Leung KW, Zhang YH, et al. Mitochondrial complex i defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. Invest Ophthalmol Vis Sci. 2008;49(4):1447. doi:10.1167/iovs.07-1361
  • Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res. 2006;25(5):490–513. doi:10.1016/j.preteyeres.2006.07.003
  • Izzotti A, Bagnis A, Saccà SC. The role of oxidative stress in glaucoma. Mutat Res Rev Mutat Res. 2006;612(2):105–114. doi:10.1016/j.mrrev.2005.11.001
  • Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016:1–23. doi:10.1155/2016/3164734
  • Von Thun Und Hohenstein-Blaul N, Kunst S, Pfeiffer N, Grus FH. Basic biochemical processes in glaucoma progression. Der Ophthalmologe. 2015;112(5):395–401. doi:10.1007/s00347-015-0007-9
  • Hao M, Li Y, Lin W, et al. Estrogen prevents high-glucose-induced damage of retinal ganglion cells via mitochondrial pathway. Graefes Arch Clin Exp Ophthalmol. 2014;253(1):83–90. doi:10.1007/s00417-014-2771-7
  • Prokai-Tatrai K, Xin H, Nguyen V, et al. 17β-Estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma. Mol Pharm. 2013;10(8):3253–3261. doi:10.1021/mp400313u
  • Sánchez-Vallejo V, Benlloch-Navarro S, López-Pedrajas R, Romero FJ, Miranda M. Neuroprotective actions of progesterone in an in vivo model of retinitis pigmentosa. Pharmacol Res. 2015;99:276–288. doi:10.1016/j.phrs.2015.06.019
  • Li CP, Qiu GZ, Liu B, Chen JL, Fu HT. Neuroprotective effect of lignans extracted from Eucommia ulmoides Oliv. on glaucoma-related neurodegeneration. Neurol Sci. 2016;37(5):755–762. doi:10.1007/s10072-016-2491-3
  • Schlieve CR, Lieven CJ, Levin LA. Biochemical activity of reactive oxygen species scavengers do not predict retinal ganglion cell survival. Invest Ophthalmol Vis Sci. 2006;47(9):3878. doi:10.1167/iovs.05-1010
  • Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753–1763. doi:10.1517/14656566.2010.493558
  • Masuda T, Shimazawa M, Hara H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (edaravone). Oxid Med Cell Longev. 2017;2017:1–14. doi:10.1155/2017/9208489
  • Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015;2(1). doi:10.1186/s40662-015-0026-2
  • Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta. 2015;1852(11):2474–2483. doi:10.1016/j.bbadis.2015.08.001
  • Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv Ophthalmol. 2016;61(2):187–196. doi:10.1016/j.survophthal.2015.06.001
  • Giacco F, Brownlee M, Schmidt AM. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070. doi:10.1161/CIRCRESAHA.110.223545
  • Bola C, Bartlett H, Eperjesi F. Resveratrol and the eye: activity and molecular mechanisms. Graefes Arch Clin Exp Ophthalmol. 2014;252(5):699–713. doi:10.1007/s00417-014-2604-8
  • Li J, Yu S, Ying J, Shi T, Wang P. Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-1α pathway. Oxid Med Cell Longev. 2017;2017:1–10. doi:10.1155/2017/7584691
  • Zeng K, Wang Y, Yang N, et al. Resveratrol inhibits diabetic-induced Müller cells apoptosis through microRNA-29b/specificity protein 1 pathway. Mol Neurobiol. 2017;54(6):4000–4014. doi:10.1007/s12035-016-9972-5
  • Soufi FG, Mohammad-nejad D, Ahmadieh H. Resveratrol improves diabetic retinopathy possibly through oxidative stress - nuclear factor κB - apoptosis pathway. Pharmacol Rep. 2012;64(6):1505–1514. doi:10.1016/S1734-1140(12)70948-9
  • Chan C-M, Chang -H-H, Wang V-C, Huang C-L, Hung C-F, Yang C-M. Inhibitory effects of resveratrol on PDGF-BB-induced retinal pigment epithelial cell migration via PDGFRβ, PI3K/Akt and MAPK pathways. PLoS One. 2013;8(2):e56819. doi:10.1371/journal.pone.0056819
  • Soufi FG, Vardyani M, Sheervalilou R, Mohammadi M, Somi MH. Long-term treatment with resveratrol attenuates oxidative stress pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys. 2012;31(04):431–438. doi:10.4149/gpb_2012_039
  • Kim YH, Kim YS, Roh GS, Choi WS, Cho GJ. Resveratrol blocks diabetes-induced early vascular lesions and vascular endothelial growth factor induction in mouse retinas. Acta Ophthalmol. 2012;90(1):e31–e37. doi:10.1111/j.1755-3768.2011.02243.x
  • Liu H, Tang J, Allen Lee C, Kern TS. Metanx and early stages of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2015. doi:10.1167/iovs.14-15220
  • Horikawa C, Yoshimura Y, Kamada C, et al. Dietary sodium intake and incidence of diabetes complications in Japanese patients with type 2 diabetes: analysis of the Japan diabetes complications study (JDCS). J Clin Endocrinol Metab. 2014;99(10):3635–3643. doi:10.1210/jc.2013-4315
  • Zhang C, Li K, Zhang J, et al. Relationship between retinol and risk of diabetic retinopathy: a Case-Control Study. Asia Pac J Clin Nutr. 2019. doi:10.6133/apjcn.201909_28(3).0021
  • Hui Y, Yin Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling. Life Sci. 2018;207:212–218. doi:10.1016/j.lfs.2018.06.005
  • Wang Y, Yan H. MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy. Sci Rep. 2016. doi:10.1038/srep26909
  • Sepahi S, Mohajeri SA, Hosseini SM, et al. Effects of crocin on diabetic maculopathy: a placebo-controlled randomized clinical trial. Am J Ophthalmol. 2018;190:89–98. doi:10.1016/j.ajo.2018.03.007
  • Yang X, Huo F, Liu B, et al. Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of PI3K/Akt signaling pathway. J Mol Neurosci. 2017;61(4):581–589. doi:10.1007/s12031-017-0899-8
  • Rodríguez-Carrizalez AD, Castellanos-González JA, Martínez-Romero EC, et al. The antioxidant effect of ubiquinone and combined therapy on mitochondrial function in blood cells in non-proliferative diabetic retinopathy: a Randomized, Double-Blind, Phase IIA, Placebo-Controlled Study. Redox Rep. 2016. doi:10.1179/1351000215Y.0000000032
  • Moon SW, Shin YU, Cho H, Bae SH, Kim HK. Effect of grape seed proanthocyanidin extract on hard exudates in patients with non-proliferative diabetic retinopathy. Medicine. 2019;98(21):e15515. doi:10.1097/MD.0000000000015515
  • Ren YB, Qi YX, Su XJ, Luan HQ, Sun Q. Therapeutic effect of lutein supplement on non-proliferative diabetic retinopathy: a Retrospective Study. Medicine. 2019;98(29):e15404. doi:10.1097/MD.0000000000015404
  • Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-de La Paz L, et al. Age-related macular degeneration: new paradigms for treatment and management of AMD. Oxid Med Cell Longev. 2018;2018:1–14. doi:10.1155/2018/8374647
  • Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201–218. doi:10.1016/j.preteyeres.2017.03.002
  • Kassoff A, Kassoff J, Buehler J, et al. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001. doi:10.1001/archopht.119.10.1417
  • Age-Related Eye Disease Study 2 (AREDS2) Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration. JAMA. 2013. doi:10.1001/jama.2013.4997
  • Mukhtar S, Ambati BK. The value of nutritional supplements in treating age-related macular degeneration: a review of the literature. Int Ophthalmol. 2019;39(12):2975–2983. doi:10.1007/s10792-019-01140-6
  • Lawrenson JG, Evans JR. Omega 3 fatty acids for preventing or slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev. 2015. doi:10.1002/14651858.CD010015.pub3
  • Chua B, Flood V, Rochtchina E, Wang JJ, Smith W, Mitchell P. Dietary fatty acids and the 5-year incidence of age-related maculopathy. Arch Ophthalmol. 2006;124(7):981. doi:10.1001/archopht.124.7.981
  • Georgiou T, Neokleous A, Nicolaou D, Sears B. Pilot study for treating dry age-related macular degeneration (AMD) with high-dose omega-3 fatty acids. PharmaNutrition. 2014;2(1):8–11. doi:10.1016/j.phanu.2013.10.001
  • Seddon JM, George S, Rosner B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of age-related macular degeneration. Arch Ophthalmol. 2006;124(7):995. doi:10.1001/archopht.124.7.995
  • Kang JH, Choung SY. Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Arch Pharm Res. 2016;39(12):1703–1715. doi:10.1007/s12272-016-0839-0
  • Calzia D, Oneto M, Caicci F, et al. Effect of polyphenolic phytochemicals on ectopic oxidative phosphorylation in rod outer segments of bovine retina. Br J Pharmacol. 2015;172(15):3890–3903. doi:10.1111/bph.13173
  • King RE, Kent KD, Bomser JA. Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact. 2005;151(2):143–149. doi:10.1016/j.cbi.2004.11.003
  • Shibagaki K, Okamoto K, Katsuta O, Nakamura M. Beneficial protective effect of pramipexole on light-induced retinal damage in mice. Exp Eye Res. 2015;139:64–72. doi:10.1016/j.exer.2015.07.007
  • Shimazaki H, Hironaka K, Fujisawa T, et al. Edaravone-loaded liposome eyedrops protect against light-induced retinal damage in mice. Invest Ophthalmol Vis Sci. 2011;52(10):7289. doi:10.1167/iovs.11-7983
  • Imai S, Inokuchi Y, Nakamura S, Tsuruma K, Shimazawa M, Hara H. Systemic administration of a free radical scavenger, edaravone, protects against light-induced photoreceptor degeneration in the mouse retina. Eur J Pharmacol. 2010;642(1–3):77–85. doi:10.1016/j.ejphar.2010.05.057
  • Masuda T, Shimazawa M, Takata S, Nakamura S, Tsuruma K, Hara H. Edaravone is a free radical scavenger that protects against laser-induced choroidal neovascularization in mice and common marmosets. Exp Eye Res. 2016;146:196–205. doi:10.1016/j.exer.2016.03.020
  • Wang HF, Ma JX, Shang QL, An JB, Chen HT, Wang CX. Safety, pharmacokinetics, and prevention effect of intraocular crocetin in proliferative vitreoretinopathy. Biomed Pharmacother. 2019;109:1211–1220. doi:10.1016/j.biopha.2018.10.193
  • Berson EL, Weigel-DiFranco C, Rosner B, Gaudio AR, Sandberg MA. Association of vitamin A supplementation with disease course in children with retinitis pigmentosa. JAMA Ophthalmol. 2018;136(5):490. doi:10.1001/jamaophthalmol.2018.0590
  • Berson EL, Rosner B, Sandberg MA, et al. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993. doi:10.1001/archopht.1993.01090060049022
  • Shinojima A, Sawa M, Sekiryu T, et al. A multicenter randomized controlled study of antioxidant supplementation with lutein for chronic central serous chorioretinopathy. Ophthalmologica. 2017;237(3):159–166. doi:10.1159/000455807
  • Bhatt P, Fnu G, Bhatia D, Shahid A, Sutariya V. Nanodelivery of resveratrol-loaded PLGA nanoparticles for age-related macular degeneration. AAPS PharmSciTech. 2020;21(8). doi:10.1208/s12249-020-01836-4