515
Views
8
CrossRef citations to date
0
Altmetric
Review

Ocular and Systemic Complications of COVID-19: Impact on Patients and Healthcare

, ORCID Icon, ORCID Icon &
Pages 1-13 | Published online: 04 Jan 2022

References

  • Leung EH, Flynn HW, Gayer S, et al. Clinical and perioperative management in ophthalmology during the COVID-19 pandemic. Int Ophthalmol Clin. 2020;60(3):141–158. doi:10.1097/IIO.0000000000000310
  • Inomata T, Kitazawa K, Kuno T, et al. Clinical and prodromal ocular symptoms in Coronavirus disease: a systematic review and meta-analysis. Invest Ophthalmol Vis Sci. 2020;61(10):29. doi:10.1167/iovs.61.10.29
  • WHO COVID-19 dashboard. Available from: https://who.sprinklr.com/. Accessed April 15, 2020.
  • Krause PR, Fleming TR, Longini IM, et al. SARS-CoV-2 variants and vaccines. N Engl J Med. 2021;385(2):179–186. doi:10.1056/NEJMsr2105280
  • Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950–2973. doi:10.1016/j.jacc.2020.04.031
  • Leentjens J, van Haaps TF, Wessels PF, Schutgens REG, Middeldorp S. COVID-19-associated coagulopathy and antithrombotic agents-lessons after 1 year. Lancet Haematol. 2021;8(7):e524–e533. doi:10.1016/S2352-3026(21)00105-8
  • Flacco ME, Acuti Martellucci C, Bravi F, et al. Treatment with ACE inhibitors or ARBs and risk of severe/lethal COVID-19: a meta-analysis. Heart Br Card Soc. 2020;106(19):1519–1524. doi:10.1136/heartjnl-2020-317336
  • CDC. Coronavirus disease 2019 (COVID-19). Centers for Disease Control and Prevention; 2020. Available from: Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assesment-hcp.html. Accessed April 10, 2020.
  • Kiappe OP, Santos da Cruz NF, Rosa PAC, Arrais L, Bueno de Moraes NS. Ocular assessments of a series of newborns gestationally exposed to maternal COVID-19 infection. JAMA Ophthalmol. 2021;139(7):777–780. doi:10.1001/jamaophthalmol.2021.1088
  • Bwire GM, Njiro BJ, Mwakawanga DL, Sabas D, Sunguya BF. Possible vertical transmission and antibodies against SARS-CoV-2 among infants born to mothers with COVID-19: a living systematic review. J Med Virol. 2021;93(3):1361–1369. doi:10.1002/jmv.26622
  • Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis. Pulmonology. 2021;27(4):328–337. doi:10.1016/j.pulmoe.2020.10.013
  • Fernandes GA, Azevedo E, Silva G, et al. Excess mortality by specific causes of deaths in the city of São Paulo, Brazil, during the COVID-19 pandemic. PLoS One. 2021;16(6):e0252238. doi:10.1371/journal.pone.0252238
  • Cai R, Novosad P, Tandel V, Asher S, Malani A. Representative estimates of COVID-19 infection fatality rates from four locations in India: cross-sectional study. BMJ Open. 2021;11(10):e050920. doi:10.1136/bmjopen-2021-050920
  • Steenblock C, Schwarz PEH, Ludwig B, et al. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021;9:786–798. doi:10.1016/S2213-8587(21)00244-8
  • Cagnazzo F, Arquizan C, Derraz I, et al. Neurological manifestations of patients infected with the SARS-CoV-2: a systematic review of the literature. J Neurol. 2021;268(8):2656–2665. doi:10.1007/s00415-020-10285-9
  • Raut A, Huy NT. Rising incidence of mucormycosis in patients with COVID-19: another challenge for India amidst the second wave? Lancet Respir Med. 2021;9(8):e77. doi:10.1016/S2213-2600(21)00265-4
  • Dilek A, Ozaras R, Ozkaya S, Sunbul M, Sen EI, Leblebicioglu H. COVID-19-associated mucormycosis: case report and systematic review. Travel Med Infect Dis. 2021;44:102148. doi:10.1016/j.tmaid.2021.102148
  • Ramlall V, Thangaraj PM, Meydan C, et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat Med. 2020;26(10):1609–1615. doi:10.1038/s41591-020-1021-2
  • Tuuminen R, Hecht I, Kanclerz P. Age‐related macular degeneration and mortality in SARS‐CoV‐2‐infected patients. Acta Ophthalmol (Copenh). 2020. doi:10.1111/aos.14685
  • Siemieniuk RA, Bartoszko JJ, Díaz Martinez JP, et al. Antibody and cellular therapies for treatment of covid-19: a living systematic review and network meta-analysis. BMJ. 2021;374:n2231. doi:10.1136/bmj.n2231
  • Pfizer.Pfizer’s Novel COVID-19 Oral Antiviral Treatment Candidate Reduced Risk of Hospitalization or Death by 89% in Interim Analysis of Phase 2/3 EPIC-HR Study. 5 Nov 2021. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate. Accessed 19 Dec 2021.
  • Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ. 2020;370:m2980. doi:10.1136/bmj.m2980
  • Shankar-Hari M, Vale CL, Mateo GM, et al. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. JAMA. 2021;326(6):499–518. doi:10.1001/jama.2021.11330
  • Ngamprasertchai T, Kajeekul R, Sivakorn C, et al. Efficacy and safety of immunomodulators in patients with COVID-19: a systematic review and network meta-analysis of randomized controlled trials. Infect Dis Ther. 2021. doi:10.1007/s40121-021-00545-0
  • Singh B, Ryan H, Kredo T, Chaplin M, Fletcher T. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database Syst Rev. 2021;2:CD013587. doi:10.1002/14651858.CD013587.pub2
  • Bartoszko JJ, Siemieniuk RAC, Kum E, et al. Prophylaxis against covid-19: living systematic review and network meta-analysis. BMJ. 2021;373:n949. doi:10.1136/bmj.n949
  • Estcourt LJ, Turgeon AF, Turgeon AF, et al. Effect of convalescent plasma on organ support-free days in critically ill patients with COVID-19: a randomized clinical trial. JAMA. 2021;326:1690–1702. doi:10.1001/jama.2021.18178
  • Janiaud P, Axfors C, Schmitt AM, et al. Association of convalescent plasma treatment with clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. JAMA. 2021;325(12):1185–1195. doi:10.1001/jama.2021.2747
  • ATTACC Investigators, ACTIV-4a Investigators, REMAP-CAP Investigators. Therapeutic anticoagulation with heparin in noncritically ill patients with Covid-19. N Engl J Med. 2021;385(9):790–802. doi:10.1056/NEJMoa2105911.
  • REMAP-CAP, ACTIV-4a, and ATTACC Investigators. Therapeutic anticoagulation with heparin in critically ill patients with Covid-19. N Engl J Med. 2021. doi:10.1056/NEJMoa2103417
  • Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Res Sq. 2021;rs.3.rs–266574. doi:10.21203/rs.3.rs-266574/v1.
  • Rogers-Brown JS, Wanga V, Okoro C. Outcomes among patients referred to outpatient rehabilitation clinics after COVID-19 diagnosis — United States, January 2020–March 2021. MMWR Morb Mortal Wkly Rep. 2021;70. doi:10.15585/mmwr.mm7027a2
  • Aggarwal K, Agarwal A, Jaiswal N, et al. Ocular surface manifestations of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. PLoS One. 2020;15(11):e0241661. doi:10.1371/journal.pone.0241661
  • Feng Y, Park J, Zhou Y, Armenti ST, Musch DC, Mian SI. Ocular manifestations of hospitalized COVID-19 patients in a tertiary care academic medical center in the United States: a cross-sectional study. Clin Ophthalmol Auckl NZ. 2021;15:1551–1556. doi:10.2147/OPTH.S301040
  • Ulhaq ZS, Soraya GV. The prevalence of ophthalmic manifestations in COVID-19 and the diagnostic value of ocular tissue/fluid. Graefes Arch Clin Exp Ophthalmol. 2020;1–2. doi:10.1007/s00417-020-04695-8
  • Chen L, Deng C, Chen X, et al. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta Ophthalmol (Copenh). 2020;98(8):e951–e959. doi:10.1111/aos.14472
  • Arora R, Goel R, Kumar S, et al. Evaluation of SARS-CoV-2 in tears of patients with moderate to severe COVID-19. Ophthalmology. 2021;128(4):494–503. doi:10.1016/j.ophtha.2020.08.029
  • Napoli PE, Nioi M, d’Aloja E, Fossarello M. The ocular surface and the Coronavirus disease 2019: does a dual “ocular route” exist? J Clin Med. 2020;9(5):E1269. doi:10.3390/jcm9051269
  • Napoli PE, Mangoni L, Gentile P, Braghiroli M, Fossarello M. A panel of broad-spectrum antivirals in topical ophthalmic medications from the drug repurposing approach during and after the Coronavirus disease 2019 era. J Clin Med. 2020;9(8):E2441. doi:10.3390/jcm9082441
  • Napoli PE, Nioi M, Fossarello M. The “quarantine dry eye”: the lockdown for Coronavirus disease 2019 and its implications for ocular surface health. Risk Manag Healthc Policy. 2021;14:1629–1636. doi:10.2147/RMHP.S277067
  • Araujo-Silva CA, Marcos AAA, Marinho PM, et al. Presumed SARS-CoV-2 viral particles in the human retina of patients with COVID-19. JAMA Ophthalmol. 2021;139:1015. doi:10.1001/jamaophthalmol.2021.2795
  • Teo KY, Invernizzi A, Staurenghi G, Cheung CMG. COVID-19 related retinal micro-vasculopathy - a review of current evidence: COVID-19 related retinal micro-vasculopathy. Am J Ophthalmol. 2021;S0002-9394(21)00476–1. doi:10.1016/j.ajo.2021.09.019
  • Zapata MÁ, Banderas García S, Sánchez-Moltalvá A, et al. Retinal microvascular abnormalities in patients after COVID-19 depending on disease severity. Br J Ophthalmol. 2020;bjophthalmol-2020-317953. doi:10.1136/bjophthalmol-2020-317953.
  • Costa ÍF, Bonifácio LP, Bellissimo-Rodrigues F, et al. Ocular findings among patients surviving COVID-19. Sci Rep. 2021;11:11085. doi:10.1038/s41598-021-90482-2
  • De Salvo G, Meduri A, Vaz-Pereira S, Spencer D. An uncommon cold of the retina. Surv Ophthalmol. 2021. doi:10.1016/j.survophthal.2021.08.006
  • Preti RC, Zacharias LC, Cunha LP, Monteiro MLR. Acute macular neuroretinopathy as the presenting manifestation of COVID-19 infection. Retin Cases Brief Rep. 2021;Publish Ahead of Print. doi:10.1097/ICB.0000000000001050
  • Ullah I, Sohail A, Shah MU, et al. Central Retinal Vein Occlusion in patients with COVID-19 infection: a systematic review. Ann Med Surg. 2021;71:102898. doi:10.1016/j.amsu.2021.102898
  • Monferrer-Adsuara C, Castro-Navarro V, González-Girón N, et al. A case of bilateral unusual retinal hemorrhages in a COVID-19 patient. Eur J Ophthalmol. 2020;1120672120984381. doi:10.1177/1120672120984381.
  • Ortiz-Seller A, Martínez costa L, Hernández-Pons A, Valls Pascual E, Solves Alemany A, Albert-Fort M. Ophthalmic and neuro-ophthalmic manifestations of Coronavirus disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020;28(8):1285–1289. doi:10.1080/09273948.2020.1817497
  • Yahalomi T, Pikkel J, Arnon R, Pessach Y. Central retinal vein occlusion in a young healthy COVID-19 patient: a case report. Am J Ophthalmol Case Rep. 2020;20:100992. doi:10.1016/j.ajoc.2020.100992
  • Tisdale AK, Chwalisz BK. Neuro-ophthalmic manifestations of coronavirus disease 19. Curr Opin Ophthalmol. 2020;31(6):489–494. doi:10.1097/ICU.0000000000000707
  • Gold DM, Galetta SL. Neuro-ophthalmologic complications of coronavirus disease 2019 (COVID-19). Neurosci Lett. 2021;742:135531. doi:10.1016/j.neulet.2020.135531
  • Palaiodimou L, Stefanou M-I, Katsanos AH, et al. Prevalence, clinical characteristics and outcomes of Guillain-Barré syndrome spectrum associated with COVID-19: a systematic review and meta-analysis. Eur J Neurol. 2021;28(10):3517–3529. doi:10.1111/ene.14860
  • Ma N, Li P, Wang X, et al. Ocular manifestations and clinical characteristics of children with laboratory-confirmed COVID-19 in Wuhan, China. JAMA Ophthalmol. 2020;138(10):1079–1086. doi:10.1001/jamaophthalmol.2020.3690
  • Pérez-Chimal LG, Cuevas GG, Di-Luciano A, Chamartín P, Amadeo G, Martínez-Castellanos MA. Ophthalmic manifestations associated with SARS-CoV-2 in newborn infants: a preliminary report. J AAPOS. 2021;25(2):102–104. doi:10.1016/j.jaapos.2020.11.007
  • Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1771–1778. doi:10.1016/S0140-6736(20)31103-X
  • Obeid A, Gao X, Ali FS, et al. Loss to follow-up among patients with neovascular age-related macular degeneration who received intravitreal anti–vascular endothelial growth factor injections. JAMA Ophthalmol. 2018;136(11):1251–1259. doi:10.1001/jamaophthalmol.2018.3578
  • Greenlee TE, Wang VY, Kang H, et al. Consequences of lapses in treatment with vascular endothelial growth factor inhibitors in neovascular age-related macular degeneration in routine clinical practice. Retina Phila Pa. 2021;41(3):581–587. doi:10.1097/IAE.0000000000002888
  • Tam -C-CF, Cheung K-S, Lam S, et al. Impact of Coronavirus disease 2019 (COVID-19) outbreak on ST-segment–elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes. 2020;13(4). doi:10.1161/CIRCOUTCOMES.120.006631
  • Patel LG, Peck T, Starr MR, et al. Clinical presentation of rhegmatogenous retinal detachment during the COVID-19 pandemic: a historical cohort study. Ophthalmology. 2021;128(5):686–692. doi:10.1016/j.ophtha.2020.10.009
  • Wickham L, Hay G, Hamilton R, et al. The impact of COVID policies on acute ophthalmology services—experiences from Moorfields Eye Hospital NHS Foundation Trust. Eye. 2020;34(7):1189–1192. doi:10.1038/s41433-020-0957-2
  • Bommakanti NK, Zhou Y, Ehrlich JR, et al. Application of the sight outcomes research collaborative ophthalmology data repository for triaging patients with glaucoma and clinic appointments during pandemics such as COVID-19. JAMA Ophthalmol. 2020;138(9):974–980. doi:10.1001/jamaophthalmol.2020.2974
  • Yashiro S, Ueta T, Kutsuna S, Okamoto T, Nagahara M, Ohmagari N. Using flowchart for ophthalmic consultations in hospitalized patients with COVID-19. Glob Health Med. 2020;2(6):395–397. doi:10.35772/ghm.2020.01091
  • Stone LG, Grinton ME, Talks JS, Cui J, Sun H, Lu X. Delayed follow-up of medical retina patients due to COVID-19: impact on disease activity and visual acuity. Graefes Arch Clin Exp Ophthalmol. 2021;259:1–8. doi:10.1007/s00417-021-05174-4
  • Wu C, Patel SN, Jenkins TL, Obeid A, Ho AC, Yonekawa Y. Ocular trauma during COVID-19 stay-at-home orders: a comparative cohort study. Curr Opin Ophthalmol. 2020;31(5):423–426. doi:10.1097/ICU.0000000000000687
  • Cavuoto KM, Vanner EA, Osigian CJ. Trends in pediatric ocular trauma presenting to an ophthalmology-specific emergency department during the COVID-19 pandemic. J AAPOS. 2021;25(3):170–172. doi:10.1016/j.jaapos.2021.01.004
  • Halawa OA, Friedman DS, Roldan AM, Zebardast N. Changing trends in ocular trauma during the COVID-19 pandemic in the USA. Br J Ophthalmol. 2021;bjophthalmol-2021-319627. doi:10.1136/bjophthalmol-2021-319627
  • Franzolin E, Casati S, Albertini O, et al. Impact of Covid-19 pandemic on Ophthalmic Emergency Department in an Italian tertiary eye centre. Eur J Ophthalmol. 2021;1120672121998223. doi:10.1177/1120672121998223.
  • Christy JS, Mathews P, Rhagavan A, et al. Impact of COVID-19 pandemic on infectious keratitis outcomes: a retrospective multicenter study in tertiary eye hospitals of South India. Cornea. 2021;Publish Ahead of Print. doi:10.1097/ICO.0000000000002829
  • Power B, Donnelly A, Murphy C, Fulcher T, Power W. Presentation of infectious keratitis to ED during COVID-19 lockdown. J Ophthalmol. 2021;2021:5514055. doi:10.1155/2021/5514055
  • Martin GC, Le Roux G, Guindolet D, et al. Pediatric eye injuries by hydroalcoholic gel in the context of the Coronavirus disease 2019 pandemic. JAMA Ophthalmol. 2021;139(3):348–351. doi:10.1001/jamaophthalmol.2020.6346
  • Rajendrababu S, Durai I, Mani I, Ramasamy KS, Shukla AG, Robin AL. Urgent and emergent glaucoma care during the COVID-19 pandemic: an analysis at a tertiary care hospital in South India. Indian J Ophthalmol. 2021;69(8):2215–2221. doi:10.4103/ijo.IJO_635_21
  • Shams F, El-Abiary M, Goudie C, Yorston D. Effects of lockdown on retinal detachment incidence in Scotland. Eye Lond Engl. 2021;35(4):1279–1280. doi:10.1038/s41433-020-1029-3
  • Schranz M, Georgopoulos M, Sacu S, et al. Incidence and surgical care of retinal detachment during the first SARS-CoV-2 lockdown period at a tertiary referral center in Austria. PLoS One. 2021;16(3):e0248010. doi:10.1371/journal.pone.0248010
  • Moon JY, Miller JB, Katz R, et al. The impact of the COVID-19 pandemic on ophthalmic care at an eye-specific emergency department in an outbreak hotspot. Clin Ophthalmol. 2020;14:4155–4163. doi:10.2147/OPTH.S285223
  • Awad M, Poostchi A, Orr G, Kumudhan D, Zaman A, Wilde C. Delayed presentation and increased prevalence of proliferative vitreoretinopathy for primary rhegmatogenous retinal detachments presenting during the COVID-19 pandemic lockdown. Eye Lond Engl. 2021;35(4):1282–1283. doi:10.1038/s41433-020-1056-0
  • Ashkenazy N, Goduni L, Smiddy WE. Short-term effects of COVID-19-related deferral of intravitreal injection visits. Clin Ophthalmol Auckl NZ. 2021;15:413–417. doi:10.2147/OPTH.S296345
  • Rush RB, Rush SW. Outcomes in patients resuming intravitreal anti-VEGF therapy following treatment delay during the COVID-19 pandemic. Retina Phila Pa. 2021;41:2456–2461. doi:10.1097/IAE.0000000000003276
  • Sevik MO, Aykut A, Özkan G, Dericioğlu V, Şahin Ö. The effect of COVID-19 pandemic restrictions on neovascular AMD patients treated with treat-and-extend protocol. Int Ophthalmol. 2021;41:2951–2961. doi:10.1007/s10792-021-01854-6
  • Elfalah M, AlRyalat SA, Toro MD, et al. Delayed intravitreal anti-VEGF therapy for patients during the COVID-19 lockdown: an ethical endeavor. Clin Ophthalmol Auckl NZ. 2021;15:661–669. doi:10.2147/OPTH.S289068
  • Yeter DY, Dursun D, Bozali E, Ozec AV, Erdogan H. Effects of the COVID-19 pandemic on neovascular age-related macular degeneration and response to delayed anti-VEGF treatment. J Fr Ophtalmol. 2021;44(3):299–306. doi:10.1016/j.jfo.2021.02.001
  • Song W, Singh RP, Rachitskaya AV. The effect of delay in care among patients requiring intravitreal injections. Ophthalmol Retina. 2021;5:SS2468. doi:10.1016/j.oret.2020.12.020
  • Borrelli E, Grosso D, Vella G, et al. Short-term outcomes of patients with neovascular exudative AMD: the effect of COVID-19 pandemic. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2020;258(12):2621–2628. doi:10.1007/s00417-020-04955-7
  • Naravane AV, Mundae R, Zhou Y, et al. Short term visual and structural outcomes of anti-vascular endothelial growth factor (anti-VEGF) treatment delay during the first COVID-19 wave: a pilot study. PLoS One. 2021;16(2):e0247161. doi:10.1371/journal.pone.0247161
  • Mollan SP, Fu DJ, Chuo C-Y, et al. Predicting the immediate impact of national lockdown on neovascular age-related macular degeneration and associated visual morbidity: an INSIGHT Health Data Research Hub for Eye Health report. Br J Ophthalmol. 2021;bjophthalmol-2021-319383. doi:10.1136/bjophthalmol-2021-319383.
  • Patel SN, Tang PH, Storey PP, et al. The influence of universal face mask use on endophthalmitis risk after intravitreal anti–vascular endothelial growth factor injections. Ophthalmology. 2021;128:1620–1626. doi:10.1016/j.ophtha.2021.05.010
  • Miller DC, Sun Y, Chen EM, Arnold BF, Acharya NR. The association between non-infectious uveitis and COVID-19 outcomes: an analysis of United States claims-based data. Ophthalmology. 2021;S0161-6420(21)00751-X. doi:10.1016/j.ophtha.2021.10.007
  • Abd Elmohsen MN, Youssef MM, Mamdouh Esmat S, Teleb DA, Tolba DA. Consequences of COVID-19 on uveitis patients from their own perspective: a questionnaire-based study. Ocul Immunol Inflamm. 2021;1–6. doi:10.1080/09273948.2021.1964029
  • AlBloushi AF, Alfawaz AM, Abu El Asrar AM. Implications of COVID-19 infection on patients with uveitis under biologic treatment. Br J Ophthalmol. 2021;bjophthalmol-2020-318577. doi:10.1136/bjophthalmol-2020-318577
  • Agrawal R, Testi I, Lee CS, et al. Evolving consensus for immunomodulatory therapy in non-infectious uveitis during the COVID-19 pandemic. Br J Ophthalmol. 2021;105(5):639–647. doi:10.1136/bjophthalmol-2020-316776
  • Kalra G, Williams AM, Commiskey PW, et al. Incorporating video visits into ophthalmology practice: a retrospective analysis and patient survey to assess initial experiences and patient acceptability at an academic eye center. Ophthalmol Ther. 2020;9(3):549–562. doi:10.1007/s40123-020-00269-3
  • Walsh L, Hong SC, Chalakkal RJ, Ogbuehi KC. A systematic review of current teleophthalmology services in New Zealand compared to the four comparable countries of the United Kingdom, Australia, United States of America (USA) and Canada. Clin Ophthalmol Auckl NZ. 2021;15:4015–4027. doi:10.2147/OPTH.S294428
  • Sommer AC, Blumenthal EZ. Telemedicine in ophthalmology in view of the emerging COVID-19 outbreak. Graefes Arch Clin Exp Ophthalmol. 2020;1–12. doi:10.1007/s00417-020-04879-2
  • Islam M, Sansome S, Das R, et al. Smartphone-based remote monitoring of vision in macular disease enables early detection of worsening pathology and need for intravitreal therapy. BMJ Health Care Inform. 2021;28(1):e100310. doi:10.1136/bmjhci-2020-100310
  • Khurana RN, Hoang C, Khanani AM, Steklov N, Singerman LJ. A smart mobile application to monitor visual function in diabetic retinopathy and age-related macular degeneration: the CLEAR study. Am J Ophthalmol. 2021;227:222–230. doi:10.1016/j.ajo.2021.03.033
  • Brill D, Papaliodis G. Uveitis specialists harnessing disruptive technology during the COVID-19 pandemic and beyond. Semin Ophthalmol. 2021;36(4):296–303. doi:10.1080/08820538.2021.1896753
  • Thompson MG, Stenehjem E, Grannis S, et al. Effectiveness of Covid-19 vaccines in ambulatory and inpatient care settings. N Engl J Med. 2021;385(15):1355–1371. doi:10.1056/NEJMoa2110362
  • Puranik A, Lenehan PJ, Silvert E, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv. 2021;2021.08.06.21261707. doi:10.1101/2021.08.06.21261707.
  • Walter EB, Talaat KR, Sabharwal C, et al. Evaluation of the BNT162b2 Covid-19 vaccine in children 5 to 11 years of age. N Engl J Med. 2021;null. doi:10.1056/NEJMoa2116298.
  • Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med. 2021;385(7):585–594. doi:10.1056/NEJMoa2108891
  • Tanriover MD, Doğanay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet Lond Engl. 2021;398(10296):213–222. doi:10.1016/S0140-6736(21)01429-X
  • Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–681. doi:10.1016/S0140-6736(21)00234-8
  • Cines DB, Bussel JB. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 2021;384(23):2254–2256. doi:10.1056/NEJMe2106315
  • Bussel J, Connors J, Cines D, et al. Thrombosis with thrombocytopenia syndrome - hematology.org. thrombosis with thrombocytopenia syndrome (also termed vaccine-induced thrombotic thrombocytopenia). Available from: https://www.hematology.org:443/covid-19/vaccine-induced-immune-thrombotic-thrombocytopenia. Accessed August 21, 2021.
  • Bayas A, Menacher M, Christ M, Behrens L, Rank A, Naumann M. Bilateral superior ophthalmic vein thrombosis, ischaemic stroke, and immune thrombocytopenia after ChAdOx1 nCoV-19 vaccination. Lancet Lond Engl. 2021;397(10285):e11. doi:10.1016/S0140-6736(21)00872-2
  • Panovska-Stavridis I, Pivkova-Veljanovska A, Trajkova S, Lazarevska M, Grozdanova A, Filipche V. A rare case of superior ophthalmic vein thrombosis and thrombocytopenia following ChAdOx1 nCoV-19 vaccine against SARS-CoV-2. Mediterr J Hematol Infect Dis. 2021;13(1):e2021048. doi:10.4084/MJHID.2021.048
  • McDonnell T, Jain S, Jain S, McGlynn S, McGlynn S. Left inferior ophthalmic vein thrombosis due to VITT (Vaccine Induced Thrombotic Thrombocytopenia): a case report. QJM Mon J Assoc Physicians. 2021;hcab124. doi:10.1093/qjmed/hcab124
  • Bøhler AD, Strøm ME, Sandvig KU, Moe MC, Jørstad ØK. Acute macular neuroretinopathy following COVID-19 vaccination. Eye Lond Engl. 2021. doi:10.1038/s41433-021-01610-1
  • Book BAJ, Schmidt B, Foerster AMH. Bilateral acute macular neuroretinopathy after vaccination against SARS-CoV-2. JAMA Ophthalmol. 2021;139(7):e212471. doi:10.1001/jamaophthalmol.2021.2471
  • Reyes-Capo DP, Stevens SM, Cavuoto KM. Acute abducens nerve palsy following COVID-19 vaccination. J AAPOS. 2021;25:SS1091–9. doi:10.1016/j.jaapos.2021.05.003
  • The Royal Coleege of Opthalmologists. Safety alert: retinal vein occlusions post COVID vaccination. The Royal College of Ophthalmologists; 2021. Available from: https://www.rcophth.ac.uk/2021/05/retinal-vein-occlusions-post-covid-vaccination/. Accessed August 21, 2021.
  • Wasser LM, Roditi E, Zadok D, Berkowitz L, Weill Y. Keratoplasty rejection after the BNT162b2 messenger RNA vaccine. Cornea. 2021;40(8):1070–1072. doi:10.1097/ICO.0000000000002761
  • ElSheikh RH, Haseeb A, Eleiwa TK, Elhusseiny AM. Acute Uveitis following COVID-19 vaccination. Ocul Immunol Inflamm. 2021;1–3. doi:10.1080/09273948.2021.1962917
  • Goyal M, Murthy SI, Annum S. Bilateral Multifocal Choroiditis following COVID-19 vaccination. Ocul Immunol Inflamm. 2021;1–5. doi:10.1080/09273948.2021.1957123
  • Rabinovitch T, Ben-Arie-Weintrob Y, Hareuveni-Blum T, et al. Uveitis following the BNT162b2 mRNA vaccination against SARS-CoV-2 infection: a possible association. Retina Phila Pa. 2021;41:2462–2471. doi:10.1097/IAE.0000000000003277
  • de la Presa M, Govil A, Chamberlain WD, Holland EJ. Acute corneal epithelial rejection of LR-CLAL after SARS-CoV-2 vaccination. Cornea. 2021;Publish Ahead of Print. doi:10.1097/ICO.0000000000002914
  • Yu S, Ritterband DC, Mehta I. Acute corneal transplant rejection after severe acute respiratory syndrome Coronavirus 2 mRNA-1273 vaccination. Cornea. 2021;Publish Ahead of Print. doi:10.1097/ICO.0000000000002886
  • Shah AP, Dzhaber D, Kenyon KR, Riaz KM, Ouano DP, Koo EH. Acute corneal transplant rejection after COVID-19 vaccination. Cornea. 2021. doi:10.1097/ICO.0000000000002878
  • Rallis KI, Ting DSJ, Said DG, Dua HS. Corneal graft rejection following COVID-19 vaccine. Eye Lond Engl. 2021. doi:10.1038/s41433-021-01671-2
  • Phylactou M, Li J-PO, Larkin DFP. Characteristics of endothelial corneal transplant rejection following immunisation with SARS-CoV-2 messenger RNA vaccine. Br J Ophthalmol. 2021;105(7):893–896. doi:10.1136/bjophthalmol-2021-319338
  • Ou MT, Boyarsky BJ, Motter JD, et al. Safety and reactogenicity of 2 doses of SARS-CoV-2 vaccination in solid organ transplant recipients. Transplantation. 2021;105(10):2170–2174. doi:10.1097/TP.0000000000003780
  • Eberhardt CS, Balletto E, Cornberg M, Mikulska M. Coronavirus disease 2019 vaccination in transplant recipients. Curr Opin Infect Dis. 2021;34(4):275–287. doi:10.1097/QCO.0000000000000739
  • FDA Commissioner. Coronavirus (COVID-19) update: FDA authorizes additional vaccine dose for certain immunocompromised individuals. FDA; 2021. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-vaccine-dose-certain-immunocompromised. Accessed August 15, 2021.
  • Chen E, Parikh R. COVID-19 and ophthalmology: the pandemic’s impact on private practices. American Academy of Ophthalmology; 2020. Available from: https://www.aao.org/eyenet/article/pandemic-impact-on-private-practices. Accessed August 15, 2021.
  • Napoli PE, Nioi M, d’Aloja E, Fossarello M. Safety recommendations and medical liability in ocular surgery during the COVID-19 pandemic: an unsolved dilemma. J Clin Med. 2020;9(5):E1403. doi:10.3390/jcm9051403
  • Jorkasky J, Davis M, Lee PP. Potential impact of COVID-19 disruptions on the next generation of vision scientists. JAMA Ophthalmol. 2021;139:896. doi:10.1001/jamaophthalmol.2021.1959
  • Wendt S, Abdullah Z, Barrett S, et al. A virtual COVID-19 ophthalmology rotation. Surv Ophthalmol. 2021;66(2):354–361. doi:10.1016/j.survophthal.2020.10.001