0
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Smart Devices in Optometry: Current and Future Perspectives to Clinical Optometry

ORCID Icon, , , ORCID Icon, ORCID Icon &
Pages 169-190 | Received 17 Nov 2023, Accepted 18 Jun 2024, Published online: 30 Jul 2024

References

  • Bastawrous A, Suni AV. Thirty year projected magnitude (to 2050) of near and distance vision impairment and the economic impact if existing solutions are implemented globally. Ophthalmic Epidemiol. 2020;27(2):115–120. doi:10.1080/09286586.2019.1700532
  • Zhang JH, Ramke J, Mwangi N, et al. Global eye health and the sustainable development goals: protocol for a scoping review. BMJ Open. 2020;10(3):e035789. doi:10.1136/bmjopen-2019-035789
  • Burn H, Hamm L, Black J, et al. Eye care delivery models to improve access to eye care for Indigenous peoples in high-income countries: a scoping review. BMJ Glob Health. 2021;6(3):e004484. doi:10.1136/bmjgh-2020-004484
  • Das T, Keeffe J, Sivaprasad S, Rao GN. Capacity building for universal eye health coverage in South East Asia beyond 2020. Eye. 2020;34(7):1262–1270. doi:10.1038/s41433-020-0801-8
  • Hogarty DT, Hogarty JP, Hewitt AW. Smartphone use in ophthalmology: what is their place in clinical practice? Surv Ophthalmol. 2020;65(2):250–262. doi:10.1016/j.survophthal.2019.09.001
  • Claessens JLJ, Geuvers JR, Imhof SM, Wisse RPL. Digital tools for the self-assessment of visual acuity: a systematic review [published correction appears in Ophthalmol Ther. 2021 Dec;10(4):731–732]. Ophthalmol Ther. 2021;10(4):715–730. doi:10.1007/s40123-021-00360-3
  • Suo L, Ke X, Zhang D, et al. Use of Mobile Apps for Visual Acuity Assessment: systematic Review and Meta-analysis. JMIR mHealth uHealth. 2022;10(2):e26275. doi:10.2196/26275
  • Kawamoto K, Stanojcic N, Li JO, Thomas PBM. Visual Acuity Apps for Rapid Integration in Teleconsultation Services in all Resource Settings: a Review. Asia Pac J Ophthalmol. 2021;10(4):350–354. doi:10.1097/APO.0000000000000384
  • Ansell K, Maconachie G, Bjerre A. Does the eyechart app for iPhones give comparable measurements to traditional visual acuity charts? Br Ir Orthopt J. 2020;16(1):19–24. doi:10.22599/bioj.146
  • Hazari H, Curtis R, Eden K, Hopman WM, Irrcher I, Bona MD. Validation of the visual acuity iPad app eye chart pro compared to the standard early treatment diabetic retinopathy study chart in a low-vision population. J Telemed Telecare. 2022;28(9):680–686. doi:10.1177/1357633X20960640
  • Nik Azis NN, Chew FLM, Rosland SF, Ramlee A, Che-Hamzah J. Parents’ performance using the AAPOS vision screening app to test visual acuity in Malaysian preschoolers. J AAPOS. 2019;23(5):268.e1–268.e6. doi:10.1016/j.jaapos.2019.01.019
  • Bastawrous A, Rono HK, Livingstone IA, et al. Development and validation of a smartphone-based visual acuity test (peek acuity) for clinical practice and community-based fieldwork [published correction appears in JAMA Ophthalmol. 2015 Sep; 133(9):1096]. JAMA Ophthalmol. 2015;133(8):930–937. doi:10.1001/jamaophthalmol.2015.1468
  • Zhao L, Stinnett SS, Prakalapakorn SG. Visual acuity assessment and vision screening using a novel smartphone application. J Pediatr. 2019;213:203–210.e1. doi:10.1016/j.jpeds.2019.06.021
  • Siti nor Aishah AR, Mutalib A, Asma H, et al. Development and validation of a new vision screening test algorithm for public use mobile application- A pilot study. Med J Malaysia. 2020;75(6):685–690.
  • Abdul Rahman SNA, Naing NN, Othman AM, et al. Validity and reliability of vis-screen application: a smartphone-based distance vision testing for visual impairment and blindness vision screening. Medicina. 2023;59(5):912. doi:10.3390/medicina59050912
  • Iskander M, Hu G, Sood S, et al. Validation of the New York University Langone eye test application, a smartphone-based visual acuity test. Ophthalmol Sci. 2022;2(3):100182. doi:10.1016/j.xops.2022.100182
  • Tofigh S, Shortridge E, Elkeeb A, Godley BF. Effectiveness of a smartphone application for testing near visual acuity. Eye. 2015;29(11):1464–1468. doi:10.1038/eye.2015.138
  • Tiraset N, Poonyathalang A, Padungkiatsagul T, Deeyai M, Vichitkunakorn P, Vanikieti K. Comparison of visual acuity measurement using three methods: standard ETDRS chart, near chart and a smartphone-based eye chart application. Clin Ophthalmol. 2021;15:859–869. doi:10.2147/OPTH.S304272
  • Hanyuda A, Kubota M, Kubota S, et al. Validation of a novel iPhone application for evaluating near functional visual acuity. Sci Rep. 2022;12(1):22342. doi:10.1038/s41598-022-27011-2
  • Kaido M. Functional Visual Acuity. Invest Ophthalmol Vis Sci. 2018;59(14):DES29–DES35. doi:10.1167/iovs.17-23721
  • Kaido M, Dogru M, Ishida R, Tsubota K. Concept of functional visual acuity and its applications. Cornea. 2007;26(9 Suppl 1):S29–S35. doi:10.1097/ICO.0b013e31812f6913
  • Katada Y, Negishi K, Watanabe K, et al. Functional Visual Acuity of Early Presbyopia. PLoS One. 2016;11(3):e0151094. doi:10.1371/journal.pone.0151094
  • Stoll N, Di Foggia E, Speeg-Schatz C, et al. Development and validation of a new method for visual acuity assessment on tablet in pediatric population: eMOVA test. BMC Ophthalmol. 2022;22(1):180. doi:10.1186/s12886-022-02360-8
  • Brucker J, Bhatia V, Sahel JA, Girmens JF, Mohand-Saïd S. Odysight: a mobile medical application designed for remote monitoring-A prospective study comparison with standard clinical eye tests. Ophthalmol Ther. 2019;8(3):461–476. doi:10.1007/s40123-019-0203-9
  • Raffa LH, Balbaid NT, Ageel MM. “Smart Optometry” phone-based application as a visual acuity testing tool among pediatric population. Saudi Med J. 2022;43(8):946–953. doi:10.15537/smj.2022.43.8.20220374
  • Askarian B, Tabei F, Tipton GA, Chong JW Novel keratoconus detection method using smartphone. 2019 IEEE Healthcare Innovations and Point of Care Technologies, HI-POCT 2019; 2019:60–62. doi:10.1109/HI-POCT45284.2019.8962648.
  • Wintergerst MWM, Brinkmann CK, Holz FG, Finger RP. Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation. Sci Rep. 2018;8(1):10228. doi:10.1038/s41598-018-28585-6
  • Ophthalmic Sciences unveils world’s first AI contactless device for measuring eye fluid pressure. Available from: https://www.prnewswire.com/il/news-releases/ophthalmic-sciences-unveils-worlds-first-ai-contactless-device-for-measuring-eye-fluid-pressure-301438718.html. Accessed March 30, 2024.
  • Liu Y, Holekamp NM, Prospective HJS. Longitudinal study: daily self-imaging with home OCT for neovascular age-related macular degeneration. Ophthalmol Retina. 2022;6(7):575–585. doi:10.1016/j.oret.2022.02.011
  • Hakobyan L, Lumsden J, O’Sullivan D, Bartlett H. Mobile assistive technologies for the visually impaired. Surv Ophthalmol. 2013;58(6):513–528. doi:10.1016/j.survophthal.2012.10.004
  • Senjam SS, Manna S, Bascaran C. Smartphones-based assistive technology: accessibility features and apps for people with visual impairment, and its usage, challenges, and usability testing [published correction appears in Clin Optom (Auckl). 2021 Dec 07;13:333–334]. Clin Optom. 2021;13:311–322. doi:10.2147/OPTO.S336361
  • Senjam SS. The current advances in human-smartphone user interface design: an opportunity for people with vision loss. Indian J Ophthalmol. 2021;69(9):2544–2545. doi:10.4103/ijo.IJO_835_21
  • Dockery DM, Krzystolik MG. The use of mobile applications as low-vision aids: a pilot study. R I Med J. 2020;103(8):69–72.
  • Tharaniy VE, Dharani R Effectiveness of Smartphone Applications as a tool to Improve Functional Vision and Quality of Life of Visually Impaired People. [ Unpublished Manuscript]; 2023.
  • Refractive Error RM. Still the heart of optometry. Ophthalmic Physiol Opt. 2021;41(2):211–212. doi:10.1111/opo.12790
  • Chen M, Wu A, Zhang L, et al. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. BMC Ophthalmol. 2018;18(1):159. doi:10.1186/s12886-018-0829-8
  • Priscilla JJ, Verkicharla PK. Time trends on the prevalence of myopia in India - A prediction model for 2050. Ophthalmic Physiol Opt. 2021;41(3):466–474. doi:10.1111/opo.12806
  • Kobia-Acquah E, Flitcroft DI, Akowuah PK, Lingham G, Loughman J. Regional variations and temporal trends of childhood myopia prevalence in Africa: a systematic review and meta-analysis. Ophthalmic Physiol Opt. 2022;42(6):1232–1252. doi:10.1111/opo.13035
  • Killeen OJ, Cho J, Newman-Casey PA, Kana L, Woodward MA. Barriers and facilitators to obtaining eyeglasses for vulnerable patients in a Michigan free clinic. Optom Vis Sci. 2021;98(3):243–249. doi:10.1097/OPX.0000000000001661
  • Marmamula S, Keeffe JE, Raman U, Rao GN. Population-based cross-sectional study of barriers to utilisation of refraction services in South India: rapid Assessment of Refractive Errors (RARE) Study. BMJ Open. 2011;1(1):e000172. doi:10.1136/bmjopen-2011-000172
  • Douali MG, Silver JD. Self-optimised vision correction with adaptive spectacle lenses in developing countries. Ophthalmic Physiol Opt. 2004;24(3):234–241. doi:10.1111/j.1475-1313.2004.00198.x
  • Smith K, Weissberg E, Travison TG. Alternative methods of refraction: a comparison of three techniques. Optom Vis Sci. 2010;87(3):E176–E182. doi:10.1097/OPX.0b013e3181cf86d6
  • Camp AS, Shane TS, Kang J, Thomas B, Pole C, Lee RK. Evaluating self-refraction and ready-made spectacles for treatment of uncorrected refractive error. Ophthalmic Epidemiol. 2018;25(5–6):392–398. doi:10.1080/09286586.2018.1500615
  • Zhao L, Wen Q, Nasrazadani D, et al. Refractive accuracy and visual outcome by self-refraction using adjustable-focus spectacles in young children: a randomized clinical trial. JAMA Ophthalmol. 2023;141(9):853–860. doi:10.1001/jamaophthalmol.2023.3508
  • Ocansey S, Amuda R, Abraham CH, Abu EK. Refractive error correction among urban and rural school children using two self-adjustable spectacles. BMJ Open Ophthalmol. 2023;8(1):e001202. doi:10.1136/bmjophth-2022-001202
  • Ilechie AA, Abokyi S, Owusu-Ansah A, Boadi-Kusi SB, Denkyira AK, Abraham CH. Self-refraction accuracy with adjustable spectacles among children in Ghana. Optom Vis Sci. 2015;92(4):456–463. doi:10.1097/OPX.0000000000000561
  • Ilechie AA, Abokyi S, Boadi-Kusi S, Enimah E, Ngozi E. Self-adjustable spectacle wearing compliance and associated factors among rural school children in Ghana. Optom Vis Sci. 2019;96(6):397–406. doi:10.1097/OPX.0000000000001382
  • Januschowski K, Bechtold TE, Schott TC, et al. Measuring wearing times of glasses and ocular patches using a thermosensor device from orthodontics. Acta Ophthalmol. 2013;91(8):e635–e640. doi:10.1111/aos.12171
  • Lentsch MJ, Marsack JD, Anderson HA. Objective measurement of spectacle wear with a temperature sensor data logger. Ophthalmic Physiol Opt. 2018;38(1):37–47. doi:10.1111/opo.12423
  • South J, Roberts P, Gao T, Black J, Collins A. Development of a spectacle wear monitor system: specsOn monitor. Transl Vis Sci Technol. 2021;10(12):11. doi:10.1167/tvst.10.12.11
  • Jonas JB, Ang M, Cho P, et al. IMI prevention of myopia and its progression. Invest Ophthalmol Vis Sci. 2021;62(5):6. doi:10.1167/iovs.62.5.6
  • Gifford KL, Richdale K, Kang P, et al. IMI - Clinical Management Guidelines Report. Invest Ophthalmol Vis Sci. 2019;60(3):M184–M203. doi:10.1167/iovs.18-25977
  • Dhakal R, Shah R, Huntjens B, Verkicharla PK, Lawrenson JG. Time spent outdoors as an intervention for myopia prevention and control in children: an overview of systematic reviews. Ophthalmic Physiol Opt. 2022;42(3):545–558. doi:10.1111/opo.12945
  • Karthikeyan SK, Ashwini DL, Priyanka M, Nayak A, Biswas S. Physical activity, time spent outdoors, and near work in relation to myopia prevalence, incidence, and progression: an overview of systematic reviews and meta-analyses. Indian J Ophthalmol. 2022;70(3):728–739. doi:10.4103/ijo.IJO_1564_21
  • Lingham G, Mackey DA, Lucas R, Yazar S. How does spending time outdoors protect against myopia? A review. Br J Ophthalmol. 2020;104(5):593–599. doi:10.1136/bjophthalmol-2019-314675
  • Ramamurthy D, Lin Chua SY, Saw SM. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin Exp Optom. 2015;98(6):497–506. doi:10.1111/cxo.12346
  • Bhandary SK, Dhakal R, Sanghavi V, Verkicharla PK. Ambient light level varies with different locations and environmental conditions: potential to impact myopia. PLoS One. 2021;16(7):e0254027. doi:10.1371/journal.pone.0254027
  • Dhakal R, Huntjens B, Shah R, Lawrenson JG, Verkicharla PK. Influence of location, season and time of day on the spectral composition of ambient light: investigation for application in myopia. Ophthalmic Physiol Opt. 2023;43(2):220–230. doi:10.1111/opo.13085
  • Dirani M, Tong L, Gazzard G, et al. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol. 2009;93(8):997–1000. doi:10.1136/bjo.2008.150979
  • French AN, Morgan IG, Mitchell P, Rose KA. Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study. Ophthalmology. 2013;120(10):2100–2108. doi:10.1016/j.ophtha.2013.02.035
  • Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–1285. doi:10.1016/j.ophtha.2007.12.019
  • Saw SM, Zhang MZ, Hong RZ, Fu ZF, Pang MH, Tan DT. Near-work activity, night-lights, and myopia in the Singapore-China study. Arch Ophthalmol. 2002;120(5):620–627. doi:10.1001/archopht.120.5.620
  • Ip JM, Saw SM, Rose KA, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci. 2008;49(7):2903–2910. doi:10.1167/iovs.07-0804
  • You QS, Wu LJ, Duan JL, et al. Factors associated with myopia in school children in China: the Beijing childhood eye study. PLoS One. 2012;7(12):e52668. doi:10.1371/journal.pone.0052668
  • Saw SM, Nieto FJ, Katz J, Chew SJ. Estimating the magnitude of close-up work in school-age children: a comparison of questionnaire and diary instruments. Ophthalmic Epidemiol. 1999;6(4):291–301. doi:10.1076/opep.6.4.291.4184
  • Bhandari KR, Ostrin LA. Validation of the Clouclip and utility in measuring viewing distance in adults. Ophthalmic Physiol Opt. 2020;40(6):801–814. doi:10.1111/opo.12735
  • Bhandari KR, Ostrin LA. Objective measures of viewing behaviour in children during near tasks. Clin Exp Optom. 2022;105(7):746–753. doi:10.1080/08164622.2021.1971049
  • Li L, Wen L, Lan W, Zhu H, Yang Z. A novel approach to quantify environmental risk factors of myopia: combination of wearable devices and big data science. Transl Vis Sci Technol. 2020;9(13):17. doi:10.1167/tvst.9.13.17
  • Wen L, Cao Y, Cheng Q, et al. Objectively measured near work, outdoor exposure and myopia in children. Br J Ophthalmol. 2020;104(11):1542–1547. doi:10.1136/bjophthalmol-2019-315258
  • Zhang Y, Su M, Sun Y, et al. Clouclip combined with a questionnaire on the influence factors of myopia in children. Front Pediatr. 2023;11:1228257. doi:10.3389/fped.2023.1228257
  • Wen L, Cheng Q, Lan W, et al. An objective comparison of light intensity and near-visual tasks between rural and urban school children in china by a wearable device clouclip. Transl Vis Sci Technol. 2019;8(6):15. doi:10.1167/tvst.8.6.15
  • Bhandari KR, Shukla D, Mirhajianmoghadam H, Ostrin LA. Objective measures of near viewing and light exposure in schoolchildren during COVID-19. Optom Vis Sci. 2022;99(3):241–252. doi:10.1097/OPX.0000000000001871
  • Cao Y, Lan W, Wen L, et al. An effectiveness study of a wearable device (Clouclip) intervention in unhealthy visual behaviors among school-age children: a pilot study. Medicine. 2020;99(2):e17992. doi:10.1097/MD.0000000000017992
  • Verkicharla PK, Ramamurthy D, Nguyen QD, et al. Development of the fitSight fitness tracker to increase time outdoors to prevent myopia. Transl Vis Sci Technol. 2017;6(3):20. doi:10.1167/tvst.6.3.20
  • Ostrin LA. Objectively measured light exposure in emmetropic and myopic adults. Optom Vis Sci. 2017;94(2):229–238. doi:10.1097/OPX.0000000000001013
  • Read SA, Collins MJ, Vincent SJ. Light exposure and physical activity in myopic and emmetropic children. Optom Vis Sci. 2014;91(3):330–341. doi:10.1097/OPX.0000000000000160
  • Mirhajianmoghadam H, Piña A, Ostrin LA. Objective and subjective behavioral measures in myopic and non-myopic children during the COVID-19 Pandemic. Transl Vis Sci Technol. 2021;10(11):4. doi:10.1167/tvst.10.11.4
  • Abbott KS, Queener HM, Ostrin LA. The ipRGC-driven pupil response with light exposure, refractive error, and sleep. Optom Vis Sci. 2018;95(4):323–331. doi:10.1097/OPX.0000000000001198
  • Ulaganathan S, Read SA, Collins MJ, Vincent SJ. Daily axial length and choroidal thickness variations in young adults: associations with light exposure and longitudinal axial length and choroid changes. Exp Eye Res. 2019;189:107850. doi:10.1016/j.exer.2019.107850
  • Flanagan SC, Cobice D, Richardson P, Sittlington JJ, Saunders KJ. Elevated melatonin levels found in young myopic adults are not attributable to a shift in circadian phase. Invest Ophthalmol Vis Sci. 2020;61(8):45. doi:10.1167/iovs.61.8.45
  • Dhakal R, Rudrapankte JR, Chittajallu HSNS, et al. Development and validation of a ‘MyLyt’ wearable light tracking device. Ophthalmic Physiol Opt. 2023;43(1):132–140. doi:10.1111/opo.13061
  • Dharani R, Lee CF, Theng ZX, et al. Comparison of measurements of time outdoors and light levels as risk factors for myopia in young Singapore children. Eye. 2012;26(7):911–918. doi:10.1038/eye.2012.49
  • Alvarez AA, Wildsoet CF. Quantifying light exposure patterns in young adult students. J Mod Opt. 2013;60(14):1200–1208. doi:10.1080/09500340.2013.845700
  • Ye B, Liu K, Cao S, et al. Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies. J Transl Med. 2019;17(1):314. doi:10.1186/s12967-019-2057-2
  • Williams R, Bakshi S, Ostrin EJ, Ostrin LA. Continuous objective assessment of near work. Sci Rep. 2019;9(1):6901. doi:10.1038/s41598-019-43408-y
  • Ribeiro F, Ferreira TB, Silva D, Matos AC, Gaspar S, Piñero DP. Analysis of daily visual habits in a presbyopic population. J Ophthalmol. 2023;2023:6440954. doi:10.1155/2023/6440954
  • Mrochen M, Zakharov P, Tabakcι BN, Tanrιverdi C, Kιlιç A, Flitcroft DI. Visual lifestyle of myopic children assessed with AI-powered wearable monitoring. Invest Ophthalmol Vis Sci. 2020;61(7):82.
  • Ramamurthy D, Samuel Paulraj AK, Lakshmi T, Rajagopalan T, Lavanya R. Development of smart spectacles to monitor and modify myopia-related health behaviour in children. Ophthalmic Physiol Opt. 2023;43(3):517–524. doi:10.1111/opo.13119
  • Deemer AD, Bradley CK, Ross NC, et al. Low vision enhancement with head-mounted video display systems: are we there yet? Optom Vis Sci. 2018;95(9):694–703. doi:10.1097/OPX.0000000000001278
  • 6 Vision enhancement devices you need to see. Available from: https://www.nanalyze.com/2017/04/6-vision-enhancement-devices/. Accessed October 28, 2023.
  • Nguyen XT, Koopman J, van Genderen MM, Stam HLM, Boon CJF. Artificial vision: the effectiveness of the OrCam in patients with advanced inherited retinal dystrophies. Acta Ophthalmol. 2022;100(4):e986–e993. doi:10.1111/aos.15001
  • Cottingham E, Burgum F, Gosling S, Woods L, Tandon A. Assessment of the impact of a head-mounted augmented reality low vision aid on vision and quality of life in children and young people with visual impairment. Br Ir Orthopt J. 2024;20(1):57–68. doi:10.22599/bioj.345
  • Crossland MD, Starke SD, Imielski P, Wolffsohn JS, Webster AR. Benefit of an electronic head-mounted low vision aid. Ophthalmic Physiol Opt. 2019;39(6):422–431. doi:10.1111/opo.12646
  • SHG Technologies - Home. Available from: https://www.shgtechnologies.com/. Accessed October 28, 2023.
  • Dagnelie G, Christopher P, Arditi A, et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus® II retinal prosthesis system. Clin Exp Ophthalmol. 2017;45(2):152–159. doi:10.1111/ceo.12812
  • Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. doi:10.1016/j.ophtha.2016.01.006
  • Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109(4):704–711. doi:10.1016/s0161-6420(01)01024-7
  • Ogawa A, Tanaka M. The relationship between refractive errors and retinal detachment--analysis of 1,166 retinal detachment cases. Jpn J Ophthalmol. 1988;32(3):310–315.
  • Chang MA, Congdon NG, Bykhovskaya I, Munoz B, West SK. The association between myopia and various subtypes of lens opacity: SEE (Salisbury Eye Evaluation) project. Ophthalmology. 2005;112(8):1395–1401. doi:10.1016/j.ophtha.2005.02.017
  • Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011;118(10):1989–1994.e2. doi:10.1016/j.ophtha.2011.03.012
  • Turnbull PRK, Phillips JR. Ocular effects of virtual reality headset wear in young adults. Sci Rep. 2017;7(1):16172. doi:10.1038/s41598-017-16320-6
  • Ellrich J, Hoseini-Yazdi H, Read SA, Collins MJ, Bahmani H, Schilling T. Modulation of axial length by repeated blue light stimulation of the optic nerve head in human volunteers. Invest Ophthalmol Vis Sci. 2023;64(8):5091.
  • Thakur S, Dhakal R, Verkicharla PK. Short-term exposure to blue light shows an inhibitory effect on axial elongation in human eyes independent of defocus. Invest Ophthalmol Vis Sci. 2021;62(15):22. doi:10.1167/iovs.62.15.22
  • Jiang Y, Zhu Z, Tan X, et al. Effect of repeated low-level red-light therapy for myopia control in children: a multicenter randomized controlled trial. Ophthalmology. 2022;129(5):509–519. doi:10.1016/j.ophtha.2021.11.023
  • Torii H, Mori K, Okano T, et al. Short-term exposure to violet light emitted from eyeglass frames in myopic children: a randomized pilot clinical trial. J Clin Med. 2022;11(20):6000. doi:10.3390/jcm11206000
  • Tayyaba S, Ashraf MW, Alquthami T, Ahmad Z, Manzoor S. Fuzzy-based approach using IOT devices for smart home to assist blind people for navigation. Sensors. 2020;20(13):3674. doi:10.3390/s20133674
  • Bajpai S, Radha D, Smart phone as a controlling device for smart home using speech recognition, International Conference on Communication and Signal Processing (ICCSP). Chennai, India; 2019:0701–0705, doi: 10.1109/ICCSP.2019.8697923.
  • Smart home technology creates Independence for patients with disabilities. Available from: https://www.optometrytimes.com/view/smart-home-technology-creates-independence-patients-disabilities. Accessed October 30, 2023.