134
Views
2
CrossRef citations to date
0
Altmetric
Original Research

The Impact of Free Radical Stabilization Techniques on in vivo Mechanical Changes in Highly Cross-Linked Polyethylene Acetabular Liners

ORCID Icon, ORCID Icon, , , ORCID Icon, , & show all
Pages 113-122 | Published online: 17 Aug 2021

References

  • Jacobs CA, Christensen CP, Greenwald AS, McKellop H. Clinical performance of highly cross-linked polyethylenes in total hip arthroplasty. J Bone Joint Surg Am. 2007;89(12):2779–2786. doi:10.2106/JBJS.G.00043
  • Lachiewicz PF, Soileau ES. Highly cross-linked polyethylene provides decreased osteolysis and reoperation at minimum 10-year follow-up. J Arthroplasty. 2016;31(9):1959–1962. doi:10.1016/j.arth.2016.02.038
  • Kurtz SM, Gawel HA, Patel JD. History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res. 2011;469(8):2262–2277. doi:10.1007/s11999-011-1872-4
  • Glyn-Jones S, Thomas GER, Garfjeld-Roberts P, et al. The John Charnley award: highly crosslinked polyethylene in total hip arthroplasty decreases long-term wear: a double-blind randomized trial. Clin Orthop Relat Res. 2015;473(2):432–438. doi:10.1007/s11999-014-3735-2
  • Paxton EW, Inacio MCS, Namba RS, et al. Metal-on-conventional polyethylene total hip arthroplasty bearing surfaces have a higher risk of revision than metal-on-highly crosslinked polyethylene: results from a US registry. Clin Orthop Relat Res. 2015;473(3):1011–1021. doi:10.1007/s11999-014-4105-9
  • Paxton E, Cafri G, Havelin L, et al. Risk of revision following total hip arthroplasty: metal-on-conventional polyethylene compared with metal-on-highly cross-linked polyethylene bearing surfaces: international results from six registries. J Bone Joint Surg Am. 2014;96(Suppl 1):19–24. doi:10.2106/JBJS.N.00460
  • Hanna SA, Somerville L, McCalden RW, et al. Highly cross-linked polyethylene decreases the rate of revision of total hip arthroplasty compared with conventional polyethylene at 13 years’ follow-up. Bone Joint J. 2016;98-B(1):28–32. doi:10.1302/0301-620X.98B1.36527
  • MacDonald D, Sakona A, Ianuzzi A, et al. Do first-generation highly crosslinked polyethylenes oxidize in vivo? Clin Orthop Relat Res. 2011;469(8):2278–2285. doi:10.1007/s11999-010-1728-3
  • Currier BH, Van Citters DW, Currier JH, Collier JP. In vivo oxidation in remelted highly cross-linked retrievals. J Bone Joint Surg Am. 2010;92(14):2409–2418. doi:10.2106/JBJS.I.01006
  • Miura Y, Hasegawa M, Sudo A, et al. In-vivo degradation of middle-term highly cross-linked and remelted polyethylene cups: modification induced by creep, wear and oxidation. J Mech Behav Biomed Mater. 2015;51:13–24. doi:10.1016/j.jmbbm.2015.06.028
  • Muratoglu OK, Wannomae KK, Rowell SL, et al. Ex vivo stability loss of irradiated and melted ultra-high molecular weight polyethylene. J Bone Joint Surg Am. 2010;92(17):2809–2816. doi:10.2106/JBJS.I.01017
  • Rowell SL, Reyes CR, Malchau H, Muratoglu OK. In vivo oxidative stability changes of highly cross-linked polyethylene bearings: an ex vivo investigation. J Arthroplasty. 2015;30(10):1828–1834. doi:10.1016/j.arth.2015.05.006
  • Wannomae KK, Bhattacharyya S, Freiberg A, et al. In vivo oxidation of retrieved cross-linked ultra–high-molecular-weight polyethylene acetabular components with residual free radicals. J Arthroplasty. 2006;21(7):1005–1011. doi:10.1016/j.arth.2005.07.019
  • Currier BH, Currier JH, Mayor MB, Lyford KA, Collier JP, Van Citters DW. Evaluation of oxidation and fatigue damage of retrieved crossfire polyethylene acetabular cups. J Bone Joint Surg Am. 2007;89(9):2023. doi:10.2106/00004623-200709000-00019
  • Kurtz SM, Hozack W, Turner J, et al. Mechanical properties of retrieved highly cross-linked crossfire liners after short-term implantation. J Arthroplasty. 2005;20(7):840–849. doi:10.1016/j.arth.2005.07.015
  • Kurtz SM, Hozack WJ, Purtill JJ, et al. 2006 OTTO AUFRANC AWARD PAPER: significance of in vivo degradation for polyethylene in total hip arthroplasty. Clin Orthop Relat Res. 2006;453:47–57. doi:10.1097/01.blo.0000246547.18187.0b
  • Kurtz SM, Austin MS, Azzam K, et al. Mechanical properties, oxidation, and clinical performance of retrieved highly cross-linked crossfire liners after intermediate-term implantation. J Arthroplasty. 2010;25(4):614–623.e2. doi:10.1016/j.arth.2009.04.022
  • Moore KD, Beck PR, Petersen DW, et al. Early failure of a cross-linked polyethylene acetabular liner: a case report. J Bone Joint Surg Am. 2008;90(11):2499–2504. doi:10.2106/JBJS.G.01304
  • Tower SS, Currier JH, Currier BH, Lyford KA, Van Citters DW, Mayor MB. Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J Bone Joint Surg Am. 2007;89(10):2212. doi:10.2106/00004623-200710000-00016
  • Duffy GP, Wannomae KK, Rowell SL, Muratoglu OK. Fracture of a cross-linked polyethylene liner due to impingement. J Arthroplasty. 2009;24(1):158.e15–158.e19. doi:10.1016/j.arth.2007.12.020
  • Blumenfeld TJ, McKellop HA, Schmalzried TP, Billi F. Fracture of a cross-linked polyethylene liner. J Arthroplasty. 2011;26(4):666.e5–666.e8. doi:10.1016/j.arth.2010.07.009
  • Hara D, Nakashima Y, Yamamoto T, et al. Late failure of annealed highly cross-linked polyethylene acetabular liner. J Mech Behav Biomed Mater. 2013;28:206–212. doi:10.1016/j.jmbbm.2013.08.003
  • Ast MP, John TK, Labbisiere A, et al. Fractures of a single design of highly cross-linked polyethylene acetabular liners: an analysis of voluntary reports to the United States Food and Drug Administration. J Arthroplasty. 2014;29(6):1231–1235. doi:10.1016/j.arth.2013.12.022
  • Furmanski J, Anderson M, Bal S, et al. Clinical fracture of cross-linked UHMWPE acetabular liners. Biomaterials. 2009;30(29):5572–5582. doi:10.1016/j.biomaterials.2009.07.013
  • Waewsawangwong W, Goodman SB. Unexpected failure of highly cross-linked polyethylene acetabular liner. J Arthroplasty. 2012;27(2):323.e1–323.e4. doi:10.1016/j.arth.2011.04.010
  • Strobl GR, Hagedorn W. Raman spectroscopic method for determining the crystallinity of polyethylene. J Polym Sci Polym Phys Ed. 1978;16(7):1181–1193. doi:10.1002/pol.1978.180160704
  • Atwood SA, Van Citters DW, Patten EW, et al. Tradeoffs amongst fatigue, wear, and oxidation resistance of cross-linked ultra-high molecular weight polyethylene. J Mech Behav Biomed Mater. 2011;4(7):1033–1045. doi:10.1016/j.jmbbm.2011.03.012
  • Bracco P, Bellare A, Bistolfi A, Affatato S. Ultra-high molecular weight polyethylene: influence of the chemical, physical and mechanical properties on the wear behavior. A review. Materials. 2017;10(7):791. doi:10.3390/ma10070791
  • Muratoglu OK, Bragdon CR. Highly cross-linked and melted UHMWPE. In: UHMWPE Biomaterials Handbook. Elsevier; 2016:264–273.
  • Muratoglu OK, Bragdon CR, O’Connor DO, et al. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. J Arthroplasty. 2001;16(2):149–160. doi:10.1054/arth.2001.20540
  • Wernlé JD, Gilbert JL. Micromechanics of shelf-aged and retrieved UHMWPE tibial inserts: indentation testing, oxidative profiling, and thickness effects. J Biomed Mater Res. 2005;75B(1):113–121. doi:10.1002/jbm.b.30285
  • Gilbert JL, Merkhan I. Rate effects on the microindentation-based mechanical properties of oxidized, crosslinked, and highly crystalline ultrahigh-molecular-weight polyethylene. J Biomed Mater Res. 2004;71A(3):549–558. doi:10.1002/jbm.a.30196
  • Kurtz SM, MacDonald DW, Mont MA, et al. Retrieval analysis of sequentially annealed highly crosslinked polyethylene used in total hip arthroplasty. Clin Orthop Relat Res. 2015;473(3):962–971. doi:10.1007/s11999-014-4113-9
  • Kurtz SM, Oral E. In vivo oxidation of UHMWPE. In: UHMWPE Biomaterials Handbook. Elsevier; 2016:488–505.
  • Oral E, Neils AL, Doshi BN, et al. Effects of simulated oxidation on the in vitro wear and mechanical properties of irradiated and melted highly crosslinked UHMWPE. J Biomed Mater Res. 2016;104(2):316–322. doi:10.1002/jbm.b.33368
  • Oral E, Ghali BW, Neils A, Muratoglu OK. A new mechanism of oxidation in ultrahigh molecular weight polyethylene caused by squalene absorption. J Biomed Mater Res. 2012;100B(3):742–751. doi:10.1002/jbm.b.32507
  • Fung M, Bowsher JG, Van Citters DW. Variation of mechanical properties and oxidation with radiation dose and source in highly crosslinked remelted UHMWPE. J Mech Behav Biomed Mater. 2018;82:112–119. doi:10.1016/j.jmbbm.2018.03.005
  • Reinitz SD, Currier BH, Van Citters DW, et al. Oxidation and other property changes of retrieved sequentially annealed UHMWPE acetabular and tibial bearings: in vivo chemical stability of SXL UHMWPE bearings. J Biomed Mater Res. 2015;103(3):578–586. doi:10.1002/jbm.b.33240