691
Views
1
CrossRef citations to date
0
Altmetric
Review

Review and Future/Potential Application of Mixed Reality Technology in Orthopaedic Oncology

ORCID Icon, ORCID Icon & ORCID Icon
Pages 169-186 | Published online: 16 May 2022

References

  • Fuchs B, Hoekzema N, Larson DR, Inwards CY, Sim FH. Osteosarcoma of the pelvis: outcome analysis of surgical treatment. Clin Orthop Relat Res. 2009;467:510–518. doi:10.1007/s11999-008-0495-x
  • Bertrand TE, Cruz A, Binitie O, Cheong D, Letson GD. Do surgical margins affect local recurrence and survival in extremity, nonmetastatic, high-grade osteosarcoma? Clin Orthop Relat Res. 2016;474(3):677–683. doi:10.1007/s11999-015-4359-x
  • He F, Zhang W, Shen Y, et al. Effects of resection margins on local recurrence of osteosarcoma in extremity and pelvis: systematic review and meta-analysis. Int J Surg. 2016;36(Pt A):283–292. doi:10.1016/j.ijsu.2016.11.016
  • Cho HS, Oh JH, Han I, Kim HS. The outcomes of navigation-assisted bone tumour surgery: minimum three-year follow-up. JBJS. 2012;94B(10):1414–1420.
  • Wong KC, Kumta SM. Computer-assisted tumor surgery in malignant bone tumors. Clin Orthop Relat Res. 2013;471(3):750–761. doi:10.1007/s11999-012-2557-3
  • Jeys L, Matharu GS, Nandra RS, Grimer RJ. Can computer navigation-assisted surgery reduce the risk of an intralesional margin and reduce the rate of local recurrence in patients with a tumour of the pelvis or sacrum? Bone Joint Lett J. 2013;95-B(10):1417–1424. doi:10.1302/0301-620X.95B10.31734
  • Wong KC, Kumta SM. Joint-preserving tumor resection and reconstruction using image-guided computer navigation. Clin Orthop Relat Res. 2013;471(3):762–773. doi:10.1007/s11999-012-2536-8
  • Li J, Wang Z, Guo Z, Chen GJ, Yang M, Pei GX. Precise resection and biological reconstruction under navigation guidance for young patients with juxta-articular bone sarcoma in lower extremity: preliminary report. J Pediatr Orthop. 2014;34(1):101–108. doi:10.1097/BPO.0b013e31829b2f23
  • Gerbers JG, Stevens M, Ploegmakers JJW, Bulstra SK, Jutte PC. Computer-assisted surgery in orthopedic oncology: technique, indications, and a descriptive study of 130 cases. Acta Orthop. 2014;85(6):663–669. doi:10.3109/17453674.2014.950800
  • Abraham JA, Kenneally B, Amer KBS, Geller DS. Can navigation-assisted surgery help achieve negative margins in resection of pelvic and sacral tumors? Clin Orthop Relat Res. 2018;476(3):499–508. doi:10.1007/s11999.0000000000000064
  • Bosma SE, Cleven AHG, Dijkstra PDS. Can navigation improve the ability to achieve tumor-free margins in pelvic and sacral primary bone sarcoma resections? A historically controlled study. Clin Orthop Relat Res. 2019;477(7):1548–1559. doi:10.1097/CORR.0000000000000766
  • Wong KC, Kumta SM, Sze KY, Wong CM. Use of a patient specific CAD/CAM surgical jig in extremity bone tumor resection and custom prosthetic reconstruction. Comput Aided Surg. 2012;17(6):284–293. doi:10.3109/10929088.2012.725771
  • Gouin F, Paul L, Odri GA, Cartiaux O. Computer-assisted planning and patient specific instruments for bone tumor resection within the pelvis: a series of 11 patients. Sarcoma. 2014;842709. doi:10.1155/2014/842709
  • Jentzsch T, Vlachopoulos L, Fürnstahl P, Müller DA, Fuchs B. Tumor resection at the pelvis using three-dimensional planning and patient-specific instruments: a case series. World J Surg Oncol. 2016;14(1):249. doi:10.1186/s12957-016-1006-2
  • Evrard R, Schubert T, Paul L, Docquier PL. Resection margins obtained with patient specific instruments for resecting primary pelvic bone sarcomas: a case-control study. Orthop Traumatol Surg Res. 2019;105(4):781–787. doi:10.1016/j.otsr.2018.12.016
  • Jud L, Müller DA, Fürnstahl P, Fucentese SF, Vlachopoulos L. Joint-preserving tumour resection around the knee with allograft reconstruction using three dimensional preoperative planning and patient-specific instruments. Knee. 2019;26(3):787–793. doi:10.1016/j.knee.2019.02.015
  • Fujiwara T, Kaneuchi Y, Stevenson J, et al. Navigation-assisted pelvic resections and reconstructions for periacetabular chondrosarcomas. Eur J Surg Oncol. 2021;47(2):416–423. doi:10.1016/j.ejso.2020.05.025
  • Fujiwara T, Sree DV, Stevenson J, et al. Acetabular reconstruction with an ice-cream cone prosthesis following resection of pelvic tumors: does computer navigation improve surgical outcome? J Surg Oncol. 2020;121(7):1104–1114. doi:10.1002/jso.25882
  • Wong KC. Computer-assisted musculoskeletal surgery: thinking and executing in 3D. In: Chapter 6, Introduction to Surgical Navigation. Springer; 2016:59–70. doi:10.1007/978-3-319-12943-3_6
  • Léger É, Drouin S, Collins DL, Popa T, Kersten-Oertel M. Quantifying attention shifts in augmented reality image-guided neurosurgery. Healthc Technol Lett. 2017;4(5):188–192. doi:10.1049/htl.2017.0062
  • Wong KC, Kumta SM. Use of computer navigation in orthopedic oncology. Curr Surg Rep. 2014;2:47. doi:10.1007/s40137-014-0047-0
  • Farfalli GL, Albergo JI, Ritacco LE, et al. What is the expected learning curve in computer-assisted navigation for bone tumor resection? Clin Orthop Relat Res. 2017;475:668–675. doi:10.1007/s11999-016-4761-z
  • Wong KC, Sze KY, Wong IO, Wong CM, Kumta SM. Patient-specific instrument can achieve same accuracy with less resection time than navigation assistance in periacetabular pelvic tumor surgery: a cadaveric study. Int J Comput Assist Radiol Surg. 2016;11(2):307–316. doi:10.1007/s11548-015-1250-x
  • Bosma SE, Wong KC, Paul L, Gerbers JG, Jutte PC. A cadaveric comparative study on the surgical accuracy of freehand, computer navigation, and patient-specific instruments in joint-preserving bone tumor resections. Sarcoma. 2018;2018:4065846. doi:10.1155/2018/4065846
  • McCulloch RA, Frisoni T, Kurunskal V, Maria Donati D, Jeys L. Computer navigation and 3D printing in the surgical management of bone sarcoma. Cells. 2021;10(2):195. doi:10.3390/cells10020195
  • Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57–66. doi:10.2147/ORR.S99614
  • Milgram P, Kishino F. A taxonomy of mixed reality visual displays. IEICE Trans Inform Syst. 1994;E77-D(12):1321–1329.
  • Sielhorst T, Feuerstein M, Navab N. Advanced medical displays: a literature review of augmented Reality. J Display Technol. 2008;4(4):451–467. doi:10.1109/JDT.2008.2001575
  • Eckardt C, Paulo EB. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina. 2016;36(1):137–147. doi:10.1097/IAE.0000000000000689
  • Chang JYC, Tsui LY, Yeung KSK, Yip SWY, Leung GKK. Surgical vision: google glass and surgery. Surgical Innov. 2016;23(4):422–426. doi:10.1177/1553350616646477
  • Yoon JW, Chen RE, Han PK, Si P, Freeman WD, Pirris SM. Technical feasibility and safety of an intraoperative head-up display device during spine instrumentation. Int J Med Robot Comput Assist Surg. 2016;13(3):e1770. doi:10.1002/rcs.1770
  • Gregory TM, Gregory J, Sledge J, Allard R, Mir O. Surgery guided by mixed reality: presentation of a proof of concept. Acta Orthop. 2018;89(5):480–483. doi:10.1080/17453674.2018.1506974
  • Lu L, Wang H, Liu P, et al. Applications of mixed reality technology in orthopedics surgery: a pilot study. Front Bioeng Biotechnol. 2022;10:740507. doi:10.3389/fbioe.2022.740507
  • Wong KC, Kumta SM, Antonio GE, Tse LF. Image fusion for computer-assisted bone tumor surgery. Clin Orthop Relat Res. 2008;466(10):2533–2541. doi:10.1007/s11999-008-0374-5
  • Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN. Informatics in radiology (info-RAD): introduction to the language of three-dimensional imaging with multidetector CT. Radio-Graphics. 2005;25:1409–1428.
  • Mangrulkar A, Rane S, Sunnapwar V. Image-based bio-cad modeling: overview, scope, and challenges. J Phys Conf Ser. 2020;1706:1706 012189.
  • Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H. Cinematic rendering – an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging. 2016;7:849–856. doi:10.1007/s13244-016-0518-1
  • Morimoto T, Kobayashi T, Hirata H, et al. XR (Extended Reality: virtual Reality, Augmented Reality, Mixed Reality) technology in spine medicine: status quo and quo vadis. J Clin Med. 2022;11(2):470. doi:10.3390/jcm11020470
  • Birlo M, Edwards PJE, Clarkson M, Stoyanov D. Utility of optical see-through head mounted displays in augmented reality-assisted surgery: a systematic review. Med Image Anal. 2022;77:102361. doi:10.1016/j.media.2022.102361
  • Pietruski P, Majak M, Świątek-najwer E, et al. Supporting fibula free flap harvest with augmented reality: a proof-of-concept study. Laryngoscope. 2020;130(5):1173–1179. doi:10.1002/lary.28090
  • Liounakos JI, Urakov T, Wang MY. Head-up display assisted endoscopic lumbar discectomy - a technical note. Int J Medl Robotics Comput Assist Surg. 2020;16(3):e2089. doi:10.1002/rcs.2089
  • Wang H, Wang F, Leong AP, Xu L, Chen X, Wang Q. Precision insertion of percutaneous sacroiliac screws using a novel augmented reality-based navigation system: a pilot study. Int Orthop. 2016;40(9):1941–1947. doi:10.1007/s00264-015-3028-8
  • Cabrilo I, Sarrafzadeh A, Bijlenga P, et al. Augmented reality-assisted skull base surgery. Neuro-Chirurgie. 2014;60:304–306. doi:10.1016/j.neuchi.2014.07.001
  • Ling X, Yan S, Liang C, et al. Application of mixed reality technology in the resection of benign lateral skull base tumors. J Shandong Univ. 2020;58:37–44.
  • Cabrilo I, Bijlenga P, Schaller K. Augmented reality in the surgery of cerebral aneurysms: a technical report. Neurosurgery. 2014;10(Suppl 2):252–261. doi:10.1227/NEU.0000000000000328
  • Cabrilo I, Bijlenga P, Schaller K. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations. Acta Neurochir. 2014;156:1769–1774. doi:10.1007/s00701-014-2183-9
  • Li Y, Chen X, Wang N, et al. A wearable mixed-reality holographic computer for guiding external ventricular drain insertion at the bedside. J Neurosurg. 2018;1:1–8.
  • Bose R, Fitoussi A, Hersant B, et al. Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systemic review of the literature and a classification of relevant technologies. Int J Oral Maxillofac Surg. 2019;48(1):132–139. doi:10.1016/j.ijom.2018.09.010
  • Zhu M, Liu F, Chai G, et al. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery. Sci Rep. 2017;7:42365. doi:10.1038/srep42365
  • Cho KH, Papay FA, Yanof J, et al. Mixed reality and 3D printed models for planning and execution of face transplantation. Ann Surg. 2021;274(6):e1238–e1246. doi:10.1097/SLA.0000000000003794
  • Saito Y, Sugimoto M, Imura A, et al. Intraoperative 3D hologram support with mixed reality techniques in liver surgery. J Ann Surg. 2020;271(1):e4–e7. doi:10.1097/SLA.0000000000003552
  • Abe Y, Sato S, Kato K, et al. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine. 2013;19(4):492–501. doi:10.3171/2013.7.SPINE12917
  • Molina CA, Phillips FM, Colman MW, et al. A cadaveric precision and accuracy analysis of augmented reality-mediated percutaneous pedicle implant insertion. J Neurosurg Spine. 2020;2020:1–9.
  • Molina CA, Sciubba DM, Greenberg JK, Khan M, Witham T. Clinical accuracy, technical precision, and workflow of the first in human use of an augmented-reality head-mounted display stereotactic navigation system for spine surgery. Oper Neurosurg. 2021;20(3):300–309. doi:10.1093/ons/opaa398
  • Li J, Zhang H, Li Q, et al. Treating lumbar fracture using the mixed reality technique. Biomed Res Int. 2021;2021:6620746.
  • Hiranaka T, Fujishiro T, Hida Y, et al. Augmented reality: the use of the PicoLinker smart glasses improves wire insertion under fluoroscopy. World J Orthop. 2017;8(12):891–894. doi:10.5312/wjo.v8.i12.891
  • Laguna B, Livingston K, Brar R, et al. Assessing the value of a novel augmented reality application for presurgical planning in adolescent elbow fractures. Front Virtual Real. 2020;1:19. doi:10.3389/frvir.2020.528810
  • Gregory T, Hurst SA, Moslemi A. Mixed reality assisted percutaneous scaphoid fixation. Tech Hand Up Extrem Surg. 2021;26(1):32–36. doi:10.1097/BTH.0000000000000353
  • Liu H, Auvinet E, Giles J, Rodriguez Y, Baena F. Augmented reality based navigation for computer assisted hip resurfacing: a proof of concept study. Ann Biomed Eng. 2018;46(10):1595–1605. doi:10.1007/s10439-018-2055-1
  • Kriechling P, Roner S, Liebmann F, et al. Augmented reality for base plate component placement in reverse total shoulder arthroplasty: a feasibility study. Arch Orthop Trauma Surg. 2021;141:1447–1453. doi:10.1007/s00402-020-03542-z
  • Molina CA, Dibble CF, Lo SL, Witham T, Sciubba DM. Augmented reality-mediated stereotactic navigation for execution of en bloc lumbar spondylectomy osteotomies. J Neurosurg Spine. 2021;2021:1–6.
  • Cho HS, Park YK, Gupta S, et al. Augmented reality in bone tumour resection: an experimental study. Bone Joint Res. 2017;6(3):137–143. doi:10.1302/2046-3758.63.BJR-2016-0289.R1
  • Cho HS, Park MS, Gupta S, et al. Can augmented reality be helpful in pelvic bone cancer surgery? An in vitro study. Clin Orthop Relat Res. 2018;476(9):1719–1725. doi:10.1007/s11999.0000000000000233
  • Marcus HJ, Pratt P, Hughes-Hallett A, et al. Comparative effectiveness and safety of image guidance systems in surgery: a preclinical randomised study. Lancet. 2015;385(Suppl 1):S64. doi:10.1016/S0140-6736(15)60379-8
  • Chen ZY, Liu YQ, He BW, et al. Application of ventricle puncture training system based on mixed Reality in medical education and training. Electron J Trauma Emerg. 2019;7:5–10.
  • Barber SR, Jain S, Son YJ, Chang EH. Virtual functional endoscopic sinus surgery simulation with 3d-printed models for mixed-reality nasal endoscopy. Otolaryngol Head Neck Surg. 2018;159:933–937. doi:10.1177/0194599818797586
  • Mitsuno D, Hirota Y, Akamatsu J, et al. Telementoring demonstration in craniofacial surgery with HoleLens, Skype, and three-layer facial models. J Craniofac Surg. 2019;30(1):28–32. doi:10.1097/SCS.0000000000004899
  • Martin G, Koizia L, Kooner A, et al. PanSurg collaborative use of the HoloLens2 mixed reality headset for protecting health care workers during the COVID-19 pandemic: prospective, observational evaluation. J Med Internet Res. 2020;22(8):e21486. doi:10.2196/21486
  • Li S, Qian P, Zhang X, Chen A. Research on image denoising and super-resolution reconstruction technology of multiscale-fusion images. Mobile Inform Syst. 2021. doi:10.1155/2021/5184688
  • Vovk A, Wild F, Guest W, Kuula T. Simulator sickness in augmented reality training using the microsoft HoloLens. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery; 2018:1–9; New York, NY, USA. DOI: 10.1145/3173574.3173783.