48
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Ethyl acetate extracts of Nepenthes ventricosa x sibuyanensis leaves cause growth inhibition against oral cancer cells via oxidative stress

, , , , , , & show all
Pages 5227-5239 | Published online: 03 Jul 2019

References

  • Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med. 1995;24(10):450–453.8600280
  • Danaraddi S, Koneru A, Hunasgi S, Ramalu S, Vanishree M. Natural ways to prevent and treat oral cancer. J Oral Res Rev. 2014;6(1):34–39. doi:10.4103/2249-4987.140213
  • Silverman S Jr. Oral cancer: complications of therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88(2):122–126.10468451
  • Singh A, Tripathi P. Potential of natural products for the prevention of oral cancer In: Akhtar MS, Swamy MK, editors. Anticancer Plants: Natural Products and Biotechnological Implements. Vol. 2 Singapore: Springer Singapore; 2018:41–66.
  • Lee JC, Hou MF, Huang HW, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013;13(1):55. doi:10.1186/1475-2867-13-5523724847
  • Pereira LO, Bicalho LS, Campos-da-Paz Lopes M, et al. DNA damage and apoptosis induced by Pteridium aquilinum aqueous extract in the oral cell lines HSG and OSCC-3. J Oral Pathol Med. 2009;38(5):441–447. doi:10.1111/j.1600-0714.2008.00705.x19175853
  • Lin MH, Liu YC, Liu SY, et al. Clathrin-mediated endocytosis is required for ANE 30-100K-induced autophagy. J Oral Pathol Med. 2018;47(1):25–31. doi:10.1111/jop.1259328520088
  • Shin JA, Ryu MH, Kwon KH, Choi B, Cho SD. Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines. J Oral Pathol Med. 2015;44(6):420–428. doi:10.1111/jop.1224825212570
  • Chiu CC, Haung JW, Chang FR, et al. Golden berry-derived 4beta-hydroxywithanolide E for selectively killing oral cancer cells by generating ROS, DNA damage, and apoptotic pathways. PLoS One. 2013;8(5):e64739. doi:10.1371/journal.pone.006473923705007
  • Yen CY, Hou MF, Yang ZW, et al. Concentration effects of grape seed extracts in anti-oral cancer cells involving differential apoptosis, oxidative stress, and DNA damage. BMC Complement Altern Med. 2015;15(1):94. doi:10.1186/s12906-015-0621-825880412
  • Chen CY, Yen CY, Wang HR, et al. Tenuifolide B from Cinnamomum tenuifolium stem selectively inhibits proliferation of oral cancer cells via apoptosis, ROS generation, mitochondrial depolarization, and DNA damage. Toxins (Basel). 2016;8(11):319. doi:10.3390/toxins8110319
  • Chang YT, Wu CY, Tang JY, et al. Sinularin induces oxidative stress-mediated G2/M arrest and apoptosis in oral cancer cells. Environ Toxicol. 2017;32(9):2124–2132. doi:10.1002/tox.2242528548367
  • Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201–217. doi:10.11646/phytotaxa.261.3.1
  • Thanh NV, Thao NP, Dat le D, et al. Two new naphthalene glucosides and other bioactive compounds from the carnivorous plant Nepenthes mirabilis Arch Pharm Res. 2015;38(10):1774–1782. doi:10.1007/s12272-015-0576-9
  • Thao NP, Luyen BT, Koo JE, et al. In vitro anti-inflammatory components isolated from the carnivorous plant Nepenthes mirabilis (Lour.) Rafarin. Pharm Biol. 2016;54(4):588–594. doi:10.3109/13880209.2015.106723426186458
  • Buch F, Pauchet Y, Rott M, Mithofer A. Characterization and heterologous expression of a PR-1 protein from traps of the carnivorous plant Nepenthes mirabilis.. Phytochemistry. 2014;100:43–50. doi:10.1016/j.phytochem.2014.01.01424534104
  • Gwee PS, Khoo KS, Ong HC, Sit NW. Bioactivity-guided isolation and structural characterization of the antifungal compound, plumbagin, from Nepenthes gracilis.. Pharm Biol. 2014;52(12):1526–1531. doi:10.3109/13880209.2014.90208325026359
  • Thanh NV, Thao NP, Huong PTT, et al. Naphthoquinone and flavonoid constituents from the carnivorous plant Nepenthes mirabilis and their anti-osteoporotic and antioxidant activities. Phytochem Lett. 2015;11:254–259. doi:10.1016/j.phytol.2015.01.009
  • Aung HH, Chia LS, Goh NK, et al. Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis.. Fitoterapia. 2002;73(5):445–447.12165348
  • Ismail NA, Kamariah AS, Lim LBL, Ahmad N. Phytochemical and pharmacological evaluation of methanolic extracts of the leaves of Nepenthes bicalcarata.. Int J Pharmacogn Phytochem Res. 2015;7(6):1127–1138.
  • Iqubal MA, Khan M, Kumar P, Kumar A, Ajai K. Role of vitamin E in prevention of oral cancer:-a review. J Clin Diagn Res. 2014;8(10):ZE05–07. doi:10.7860/JCDR/2014/9166.4958
  • Huang CH, Yeh JM, Chan WH. Hazardous impacts of silver nanoparticles on mouse oocyte maturation and fertilization and fetal development through induction of apoptotic processes. Environ Toxicol. 2018;33(10):1039–1049. doi:10.1002/tox.2259029964317
  • Wang TS, Lin CP, Chen YP, Chao MR, Li CC, Liu KL. CYP450-mediated mitochondrial ROS production involved in arecoline N-oxide-induced oxidative damage in liver cell lines. Environ Toxicol. 2018;33(10):1029–1038. doi:10.1002/tox.2258829964313
  • Chang YT, Huang CY, Li KT, et al. Sinuleptolide inhibits proliferation of oral cancer Ca9-22 cells involving apoptosis, oxidative stress, and DNA damage. Arch Oral Biol. 2016;66:147–154. doi:10.1016/j.archoralbio.2016.02.01926954095
  • Yeh CC, Tseng CN, Yang JI, et al. Antiproliferation and induction of apoptosis in Ca9-22 oral cancer cells by ethanolic extract of Gracilaria tenuistipitata.. Molecules. 2012;17(9):10916–10927. doi:10.3390/molecules17091091622968475
  • Vignon C, Debeissat C, Georget MT, et al. Flow cytometric quantification of all phases of the cell cycle and apoptosis in a two-color fluorescence plot. PLoS One. 2013;8(7):e68425. doi:10.1371/journal.pone.006842523935867
  • Chang HW, Tang JY, Yen CY, et al. Synergistic anti-oral cancer effects of UVC and methanolic extracts of Cryptocarya concinna roots via apoptosis, oxidative stress and DNA damage. Int J Radiat Biol. 2016;92(5):263–272. doi:10.3109/09553002.2016.114575326887975
  • Huang HW, Tang JY, Ou-Yang F, et al. Sinularin selectively kills breast cancer cells showing G2/M arrest, apoptosis, and oxidative DNA damage. Molecules. 2018;23(4):849. doi:10.3390/molecules23040849
  • Chang HW, Li RN, Wang HR, et al. Withaferin A induces oxidative stress-mediated apoptosis and DNA damage in oral cancer cells. Front Physiol. 2017;8:634. doi:10.3389/fphys.2017.0063428936177
  • Yeh CC, Yang JI, Lee JC, et al. Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress. BMC Complement Altern Med. 2012;12(1):142. doi:10.1186/1472-6882-12-14222937998
  • Lu MC, Li TY, Hsieh YC, Hsieh PC, Chu YL. Chemical evaluation and cytotoxic mechanism investigation of Clinacanthus nutans extract in lymphoma SUP-T1 cells. Environ Toxicol. 2018:(In press). doi:10.1002/tox.22629
  • Mukhopadhyay P, Rajesh M, Yoshihiro K, Hasko G, Pacher P. Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun. 2007;358(1):203–208. doi:10.1016/j.bbrc.2007.04.10617475217
  • Chang YT, Huang CY, Tang JY, et al. Reactive oxygen species mediate soft corals-derived sinuleptolide-induced antiproliferation and DNA damage in oral cancer cells. Onco Targets Ther. 2017;10:3289–3297. doi:10.2147/OTT.S13812328740404
  • Chang HS, Tang JY, Yen CY, et al. Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. BMC Complement Altern Med. 2016;16(1):94. doi:10.1186/s12906-016-1073-526955958
  • Tang JY, Huang HW, Wang HR, et al. 4beta-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. Environ Toxicol. 2018;33(3):295–304. doi:10.1002/tox.2251629165875
  • Alenzi FQ. Links between apoptosis, proliferation and the cell cycle. Brit J Biomed Sci. 2004;61(2):99–102. doi:10.1080/09674845.2004.1173265215250676
  • Jena NR. DNA damage by reactive species: mechanisms, mutation and repair. J Biosci. 2012;37(3):503–517.22750987
  • Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?. Nat Rev Cancer. 2014;14(11):709–721. doi:10.1038/nrc380325342630
  • Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798. doi:10.1038/sj.onc.120960816892092
  • Rodzali NN, Mydin MM. Antibacterial activity of leaves and pitchers extract of Nepenthes gracilis against Bacillus subtilis and Escherichia coli. J Fundam Appl Sci. 2017;9(6S):81–88. doi:10.4314/jfas.v9i6s.7
  • Shin KS, Lee S, Cha BJ. Suppression of phytopathogenic fungi by hexane extract of Nepenthes ventricosa x maxima leaf. Fitoterapia. 2007;78(7–8):585–586. doi:10.1016/j.fitote.2007.03.02017573203
  • Bouayed J, Bohn T. Exogenous antioxidants–double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010;3(4):228–237. doi:10.4161/oxim.3.4.1285820972369
  • Chang YC, Fong Y, Tsai EM, et al. Exogenous C(8)-ceramide induces apoptosis by overproduction of ROS and the switch of superoxide dismutases SOD1 to SOD2 in human lung cancer cells. Int J Mol Sci. 2018;19(10):3010. doi:10.3390/ijms19103010
  • Li Z, Yang J, Huang H. Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Lett. 2006;580(26):6161–6168. doi:10.1016/j.febslet.2006.10.01617064697
  • Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2ʹ-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27(2):120–139. doi:10.1080/1059050090288568419412858
  • Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 2013;528:27–48. doi:10.1016/B978-0-12-405881-1.00002-123849857
  • Kashyap D, Sharma A, Garg V, et al. Reactive oxygen species (ROS): an activator of apoptosis and autophagy in cancer. J Biol Chem Sci. 2016;3(2):256–264.
  • Lee ER, Kim JY, Kang YJ, et al. Interplay between PI3K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochim Biophys Acta. 2006;1763(9):958–968. doi:10.1016/j.bbamcr.2006.06.00616905201
  • Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell. 2007;11(2):175–189. doi:10.1016/j.ccr.2006.11.02417292828