39
Views
9
CrossRef citations to date
0
Altmetric
Original Research

miR-29a inhibits proliferation, invasion, and migration of papillary thyroid cancer by targeting DPP4

, , &
Pages 4225-4233 | Published online: 28 May 2019

References

  • Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33:42–50. doi:10.1200/JCO.2014.56.825325332244
  • Raman P. Koenig RJ Pax-8-PPAR-γ 3 fusion protein in thyroid carcinoma. Nat Rev Endocrinol. 2014;10. doi:10.1038/nrendo.2014.115
  • Wang X, Lu X, Geng Z, et al. LncRNA PTCSC3/miR-574-5p governs cell proliferation and migration of papillary thyroid carcinoma via Wnt/β-catenin signaling. J Cell Biochem. 2017. doi:10.1002/jcb.26142
  • Chou CK, Yang KD, Chou FF, et al. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2013;98:196–205. doi:10.1210/jc.2012-2666
  • Sondermann A, Andreghetto FM, Moulatlet ACB, et al. MiR-9 and miR-21 as prognostic biomarkers for recurrence in papillary thyroid cancer. Clin Exp Metastasis. 2015;32:521. doi:10.1007/s10585-015-9724-326007293
  • Yun C, Su WY, Jing X, et al. MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One. 2011;6:e25872. doi:10.1371/journal.pone.002587221998710
  • Zhao D, Jiang X, Yao C, et al. Heat shock protein 47 regulated by miR-29a to enhance glioma tumor growth and invasion. J Neurooncol. 2014;118:39–47. doi:10.1007/s11060-014-1412-724595468
  • Feng W, Ni H, Feng S, et al. Overexpression of lncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer. Biomed Pharmacother. 2016;81:152–159. doi:10.1016/j.biopha.2016.04.00927261589
  • Noels H, Theelen W, Sternkopf M, et al. Reduced post-operative DPP4 activity associated with worse patient outcome after cardiac surgery. Sci Rep. 2018;8:11820. doi:10.1038/s41598-018-30235-w30087386
  • Ozóg J, Jarzab M, Pawlaczek A, et al. Expression of DPP4 gene in papillary thyroid carcinoma. Endokrynol Pol. 2006;57(Suppl A):12.17091451
  • Ma S, Jia W. Ni S miR-199a-5p inhibits the progression of papillary thyroid carcinoma by targeting SNAI1. Biochem Biophys Res Commun. 2018;497:S0006291X18302742. doi:10.1016/j.bbrc.2018.02.051
  • Luo D, Chen H, Li X, et al. Activation of the ROCK1/MMP-9 pathway is associated with the invasion and poor prognosis in papillary thyroid carcinoma. Int J Oncol. 2017;51:1209–1218. doi:10.3892/ijo.2017.410028848996
  • Lacout A, Chevenet C, Marcy PY. Recurrence in patients with classic papillary thyroid carcinoma: highlight on power doppler US. Radiology. 2016;279:653–654. doi:10.1148/radiol.201615250627089196
  • Brunet VA, Pericay C, Moya I, et al. microRNA expression profile in stage III colorectal cancer: circulating miR-18a and miR-29a as promising biomarkers. Oncol Rep. 2013;30:320–326. doi:10.3892/or.2013.247523673725
  • Li Y, Kong D, Ahmad A, et al. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics. 2012;7:940. doi:10.4161/epi.2123622805767
  • Li R, Liu J, Li Q, et al. miR-29a suppresses growth and metastasis in papillary thyroid carcinoma by targeting AKT3. Tumor Biol. 2016;37:3987–3996. doi:10.1007/s13277-015-4165-9
  • Liu J, Fei D, Xing J, et al. MicroRNA-29a inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes by repressing STAT3. Biomed Pharmacother;2017 173–181. doi:10.1016/j.biopha.2017.09.120
  • Ma Y. Sun Y miR-29a-3p inhibits growth, proliferation, and invasion of papillary thyroid carcinoma by suppressing NF-kappaB signaling via direct targeting of OTUB2. Cancer Manag Res. 2019;11:13–23. doi:10.2147/CMAR.S18478130588107
  • Ma J, Li T, Yuan H, et al. MicroRNA‐29a inhibits proliferation and motility of Schwannoma cells by targeting CDK6. J Cell Biochem. 2017;119:2617–2626.29023945
  • Mazyar J, Stanley Z, Chen WT. Plasma seprase and DPP4 levels as markers of disease and prognosis in cancer. Dis Markers. 2012;32:309–320. doi:10.3233/DMA-2011-088922674411
  • Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes preclinical biology and mechanisms of action. Diabetes Care. 2007;30:1335. doi:10.2337/dc07-071717337495
  • Tanaka Y, Kume S, Chin-Kanasaki M, et al. Renoprotective effect of DPP-4 inhibitors against free fatty acid-bound albumin-induced renal proximal tubular cell injury. Biochem Biophys Res Commun. 2016;470:539. doi:10.1016/j.bbrc.2016.01.10926802469
  • Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes. 2014;63:2120. doi:10.2337/db13-102924574044
  • Nakashima S, Matsui T, Takeuchi M, et al. Linagliptin blocks renal damage in type 1 diabetic rats by suppressing advanced glycation end products-receptor axis. Hormone Metab Res. 2014;46:717–721. doi:10.1055/s-0034-1371892
  • Ott C, Raff U, Schmidt S, et al. Effects of saxagliptin on early microvascular changes in patients with type 2 diabetes. Cardiovasc Diabetol. 2014;13:1–9. doi:10.1186/1475-2840-13-124383855
  • Mukai E, Morita A, Hiratsuka A, et al. Dual roles of a DPP-4 inhibitor on cytoprotection and proliferation of pancreatic beta cells in a mouse model of beta cell injury/regeneration. Diabetologia. 2014;57:S93–S93.
  • Wronkowitz N, Görgens SW, Romacho T, et al. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim Biophys Acta. 2014;1842:1613–1621. doi:10.1016/j.bbadis.2014.06.00424928308
  • Davies S, Beckenkamp A. Buffon A CD26 a cancer stem cell marker and therapeutic target. Biomed Pharmacother. 2015;71:135–138. doi:10.1016/j.biopha.2015.02.03125960228