476
Views
8
CrossRef citations to date
0
Altmetric
Review

Glioblastoma: Pitfalls and Opportunities of Immunotherapeutic Combinations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 437-468 | Published online: 28 Apr 2022

References

  • Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392(10145):432–446. doi:10.1016/S0140-6736(18)30990-5
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996. doi:10.1056/NEJMoa043330
  • Feldheim J, Kessler AF, Monoranu CM, Ernestus RI, Löhr M, Hagemann C. Changes of O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation in glioblastoma relapse-a meta-analysis type literature review. Cancers. 2019;11(12):1837. doi:10.3390/cancers11121837
  • Li Y, Ali S, Clarke J, Cha S. Bevacizumab in recurrent glioma: patterns of treatment failure and implications. Brain Tumor Res Treat. 2017;5(1):1–9. doi:10.14791/btrt.2017.5.1.1
  • Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–2316. doi:10.1001/jama.2017.18718
  • Ballman KV, Buckner JC, Brown PD, et al. The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol. 2007;9(1):29–38. doi:10.1215/15228517-2006-025
  • Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol. 2017;19(suppl_5):v1–v88. doi:10.1093/neuonc/nox158
  • Montemurro N, Fanelli GN, Scatena C, et al. Surgical outcome and molecular pattern characterization of recurrent glioblastoma multiforme: a single-center retrospective series. Clin Neurol Neurosurg. 2021;207:106735. doi:10.1016/j.clineuro.2021.106735
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi:10.1093/neuonc/noab106
  • Uhm J. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–1068. doi:10.1038/nature07385
  • Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. doi:10.1016/j.ccr.2009.12.020
  • Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–173. doi:10.1016/j.ccr.2006.02.019
  • Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073–1113. doi:10.1093/neuonc/noaa106
  • Sidaway P. CNS cancer: glioblastoma subtypes revisited. Nat Rev Clin Oncol. 2017;14(10):587. doi:10.1038/nrclinonc.2017.122
  • Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42–56.e46. doi:10.1016/j.ccell.2017.06.003
  • Gabrusiewicz K, Rodriguez B, Wei J, et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. 2016;1(2). doi:10.1172/jci.insight.85841
  • Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2012;60(3):502–514. doi:10.1002/glia.21264
  • Buonfiglioli A, Hambardzumyan D. Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathol Commun. 2021;9(1):54. doi:10.1186/s40478-021-01156-z
  • Chen Z, Hambardzumyan D. Immune microenvironment in glioblastoma subtypes. Front Immunol. 2018;9:1004. doi:10.3389/fimmu.2018.01004
  • Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. Immunol Rev. 2006;213(1):48–65. doi:10.1111/j.1600-065X.2006.00441.x
  • Huang J, Liu F, Liu Z, et al. Immune checkpoint in glioblastoma: promising and challenging. Front Pharmacol. 2017;8. doi:10.3389/fphar.2017.00242
  • Korn T, Kallies A. T cell responses in the central nervous system. Nat Rev Immunol. 2017;17(3):179–194. doi:10.1038/nri.2016.144
  • Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990;170:111–123.
  • Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–341. doi:10.1038/nature14432
  • Johnston M, Nagra G, Koh L, Zakharov A, Armstrong D. Cerebrospinal fluid transport across the cribriform plate into extracranial lymphatics in rats: development and quantification. Cerebrospinal Fluid Res. 2006;3(S1). doi:10.1186/1743-8454-3-S1-S9
  • Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–999. doi:10.1084/jem.20142290
  • Matias D, Balca-Silva J, da Graca GC, et al. Microglia/astrocytes-glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factors. Front Cell Neurosci. 2018;12:235. doi:10.3389/fncel.2018.00235
  • Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 2012;33(12):579–589. doi:10.1016/j.it.2012.07.004
  • Desai K, Hubben A, Ahluwalia M. The role of checkpoint inhibitors in glioblastoma. Target Oncol. 2019;14(4):375–394. doi:10.1007/s11523-019-00655-3
  • Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B. Immune microenvironment of gliomas. Lab Investig. 2017;97(5):498–518. doi:10.1038/labinvest.2017.19
  • Fanelli GN, Grassini D, Ortenzi V, et al. Decipher the glioblastoma microenvironment: the first milestone for new groundbreaking therapeutic strategies. Genes. 2021;12(3):445. doi:10.3390/genes12030445
  • Kuang D-M, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–1337. doi:10.1084/jem.20082173
  • Paolino M, Penninger J. The role of TAM family receptors in immune cell function: implications for cancer therapy. Cancers. 2016;8(10):97. doi:10.3390/cancers8100097
  • Ruffell B, Chang-Strachan D, Chan V, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26(5):623–637. doi:10.1016/j.ccell.2014.09.006
  • Silver DJ, Sinyuk M, Vogelbaum MA, Ahluwalia MS, Lathia JD. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro-Oncology. 2016;18(2):153–159. doi:10.1093/neuonc/nov157
  • Urbantat RM, Vajkoczy P, Brandenburg S. Advances in chemokine signaling pathways as therapeutic targets in glioblastoma. Cancers. 2021;13(12):2983. doi:10.3390/cancers13122983
  • Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19(1):20–27. doi:10.1038/nn.4185
  • Annovazzi L, Mellai M, Bovio E, Mazzetti S, Pollo B, Schiffer D. Microglia immunophenotyping in gliomas. Oncol Lett. 2018;15(1):998–1006. doi:10.3892/ol.2017.7386
  • Leblond MM, Peres EA, Helaine C, et al. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget. 2017;8(42):72597–72612. doi:10.18632/oncotarget.19994
  • Franzin R, Netti GS, Spadaccino F, et al. The use of immune checkpoint inhibitors in oncology and the occurrence of AKI: where do we stand? Front Immunol. 2020;11:574271. doi:10.3389/fimmu.2020.574271
  • Maxwell R, Jackson CM, Lim M. Clinical trials investigating immune checkpoint blockade in glioblastoma. Curr Treat Options Oncol. 2017;18(8):51. doi:10.1007/s11864-017-0492-y
  • Cheng X, Veverka V, Radhakrishnan A, et al. Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem. 2013;288(17):11771–11785. doi:10.1074/jbc.M112.448126
  • Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–1369. doi:10.1038/70932
  • Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–3029. doi:10.1084/jem.20090847
  • Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-pd-1 therapy. Clin Cancer Res. 2014;20(19):5064–5074. doi:10.1158/1078-0432.CCR-13-3271
  • Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-Oncology. 2015;17(8):1064–1075. doi:10.1093/neuonc/nou307
  • Nduom EK, Wei J, Yaghi NK, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology. 2016;18(2):195–205. doi:10.1093/neuonc/nov172
  • Hao C, Chen G, Zhao H, et al. PD-L1 expression in glioblastoma, the clinical and prognostic significance: a systematic literature review and meta-analysis. Front Oncol. 2020;10:1015. doi:10.3389/fonc.2020.01015
  • Chen RQ, Liu F, Qiu XY, Chen XQ. The prognostic and therapeutic value of PD-L1 in glioma. Front Pharmacol. 2018;9:1503. doi:10.3389/fphar.2018.01503
  • Raedler LA. Opdivo (Nivolumab): second PD-1 inhibitor receives FDA approval for unresectable or metastatic melanoma. Am Health Drug Benefits. 2015;8(Spec Feature):180–183.
  • Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 2015;23:32–38. doi:10.1016/j.coph.2015.05.011
  • Huang BY, Zhan YP, Zong WJ, et al. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells. PLoS One. 2015;10(8):e0134715. doi:10.1371/journal.pone.0134715
  • Reardon DA, Gokhale PC, Klein SR, et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res. 2016;4(2):124–135. doi:10.1158/2326-6066.CIR-15-0151
  • Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Physics. 2013;86(2):343–349. doi:10.1016/j.ijrobp.2012.12.025
  • Chamberlain MC, Kim BT. Nivolumab for patients with recurrent glioblastoma progressing on bevacizumab: a retrospective case series. J Neurooncol. 2017;133(3):561–569. doi:10.1007/s11060-017-2466-0
  • Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25(3):470–476. doi:10.1038/s41591-018-0339-5
  • Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–486. doi:10.1038/s41591-018-0337-7
  • de Groot J, Penas-Prado M, Alfaro-Munoz K, et al. Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro Oncol. 2020;22(4):539–549. doi:10.1093/neuonc/noz185
  • Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma. JAMA Oncol. 2020;6(7):1003. doi:10.1001/jamaoncol.2020.1024
  • Reardon DA, Omuro A, Brandes AA, et al. OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro-Oncology. 2017;19(suppl_3):iii21. doi:10.1093/neuonc/nox036.071
  • Omuro A, Vlahovic G, Baehring J, et al. OS07.3 nivolumab in combination with radiotherapy with or without temozolomide in patients with newly diagnosed glioblastoma: updated results from CheckMate 143. Neuro-Oncology. 2017;19(suppl_3):iii13. doi:10.1093/neuonc/nox036.044
  • Ahluwalia MS, Rauf Y, Li H, Wen PY, Peereboom DM, Reardon DA. Randomized Phase 2 study of nivolumab (nivo) plus either standard or reduced dose bevacizumab (bev) in recurrent glioblastoma (rGBM). J Clin Oncol. 2021;39(15_suppl):2015. doi:10.1200/JCO.2021.39.15_suppl.2015
  • Chokshi CR, Brakel BA, Tatari N, et al. Advances in immunotherapy for adult glioblastoma. Cancers. 2021;13(14):3400. doi:10.3390/cancers13143400
  • Sampson JH, Omuro AMP, Preusser M, et al. A randomized, phase 3, open-label study of nivolumab versus temozolomide (TMZ) in combination with radiotherapy (RT) in adult patients (pts) with newly diagnosed, O-6-methylguanine DNA methyltransferase (MGMT)-unmethylated glioblastoma (GBM): CheckMate-498. J Clin Oncol. 2016;34(15_suppl):TPS2079. doi:10.1200/JCO.2016.34.15_suppl.TPS2079
  • Bristol Myers Squibb announces update on phase 3 CheckMate −548 trial evaluating patients with newly diagnosed MGMT-methylated glioblastoma multiforme; 2021. Available from: https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Announces-Update-on-Phase-3-CheckMate–548-Trial-Evaluating-Patients-with-Newly-Diagnosed-MGMT-Methylated-Glioblastoma-Multiforme/default.aspx. Accessed September 19, 2021.
  • Reardon DA, Kim TM, Frenel JS, et al. Treatment with pembrolizumab in programmed death ligand 1-positive recurrent glioblastoma: results from the multicohort Phase 1 KEYNOTE-028 trial. Cancer. 2021;127(10):1620–1629. doi:10.1002/cncr.33378
  • Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. JNCI. 2000;92(3):205–216. doi:10.1093/jnci/92.3.205
  • Reardon DA, Kim T-M, Frenel J-S, et al. ATIM-35 results of the phase Ib KEYNOTE-028 multi-cohort trial of pembrolizumab monotherapy in patients with recurrent PD-L1-positive glioblastoma multiforme (GBM). Neuro-Oncology. 2016;18(suppl_6):vi25–vi26. doi:10.1093/neuonc/now212.100
  • Reardon DA, Nayak L, Peters KB, et al. Phase II study of pembrolizumab or pembrolizumab plus bevacizumab for recurrent glioblastoma (rGBM) patients. J Clin Oncol. 2018;36(15_suppl):2006. doi:10.1200/JCO.2018.36.15_suppl.2006
  • Sahebjam S, Forsyth P, Arrington J, et al. Atim-18. A phase I trial of hypofractionated stereotactic irradiation (Hfsrt) with pembrolizumab and bevacizumab in patients with recurrent high grade glioma (Nct02313272). Neuro-Oncology. 2017;19(suppl_6):vi30. doi:10.1093/neuonc/nox168.113
  • Reardon DA, Kaley TJ, Dietrich J, et al. Phase II study to evaluate safety and efficacy of MEDI4736 (durvalumab) + radiotherapy in patients with newly diagnosed unmethylated MGMT glioblastoma (new unmeth GBM). J Clin Oncol. 2019;37(15_suppl):2032. doi:10.1200/JCO.2019.37.15_suppl.2032
  • Reardon DA, Kaley TJ, Dietrich J, et al. Phase 2 study to evaluate safety and efficacy of MEDI4736 (durvalumab [DUR]) in glioblastoma (GBM) patients: an update. J Clin Oncol. 2017;35(15_suppl):2042. doi:10.1200/JCO.2017.35.15_suppl.2042
  • Reardon D, Kaley T, Dietrich J, et al. Atim-38. Phase 2 study to evaluate the clinical efficacy and safety of Medi4736 (Durvalumab, Durva) + bevacizumab (Bev) in Bev-naïve patients with recurrent glioblastoma (Gbm). Neuro-Oncology. 2018;20(suppl_6):vi10. doi:10.1093/neuonc/noy148.033
  • Reardon D, Kaley T, Dietrich J, et al. Atim-12. Phase 2 study to evaluate the clinical efficacy and safety of Medi4736 (Durvalumab [Dur]) in patients with bevacizumab (Bev)-refractory recurrent glioblastoma (Gbm). Neuro-Oncology. 2017;19(suppl_6):vi28.
  • Lukas RV, Rodon J, Becker K, et al. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol. 2018;140(2):317–328. doi:10.1007/s11060-018-2955-9
  • Weathers S-PS, Kamiya-Matsuoka C, Harrison RA, et al. Phase I/II study to evaluate the safety and clinical efficacy of atezolizumab (atezo; aPDL1) in combination with temozolomide (TMZ) and radiation in patients with newly diagnosed glioblastoma (GBM). J Clin Oncol. 2020;38(15_suppl):2511. doi:10.1200/JCO.2020.38.15_suppl.2511
  • Kurz S, Silverman JS, Hochman T, et al. Atim-37. Phase II, open-label, single arm, multicenter study of avelumab with hypofractionated radiation (Hfrt) for adult patients with secondarily transformed Idh-mutant glioblastoma (Gbm). Neuro-Oncology. 2019;21(Supplement_6):vi9–vi10. doi:10.1093/neuonc/noz175.036
  • Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12–26. doi:10.1111/j.1600-065X.2009.00770.x
  • Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–603. doi:10.1126/science.1202947
  • Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by Cd25+Cd4+regulatory T cells constitutively expressing cytotoxic T lymphocyte–associated antigen 4. J Exp Med. 2000;192(2):303–310. doi:10.1084/jem.192.2.303
  • Fecci PE, Ochiai H, Mitchell DA, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res. 2007;13(7):2158–2167. doi:10.1158/1078-0432.CCR-06-2070
  • Prieto PA, Yang JC, Sherry RM, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res. 2012;18(7):2039–2047. doi:10.1158/1078-0432.CCR-11-1823
  • Margolin K, Ernstoff MS, Hamid O, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–465. doi:10.1016/S1470-2045(12)70090-6
  • Queirolo P, Spagnolo F, Ascierto PA, et al. Efficacy and safety of ipilimumab in patients with advanced melanoma and brain metastases. J Neurooncol. 2014;118(1):109–116. doi:10.1007/s11060-014-1400-y
  • Omuro A, Vlahovic G, Lim M, et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncology. 2018;20(5):674–686. doi:10.1093/neuonc/nox208
  • Schwarze JK, Duerinck J, Dufait I, et al. A phase I clinical trial on intratumoral and intracavitary administration of ipilimumab and nivolumab in patients with recurrent glioblastoma. J Clin Oncol. 2020;38(15_suppl):2534. doi:10.1200/JCO.2020.38.15_suppl.2534
  • Sloan AE, Gilbert MR, Zhang P, et al. NRG BN002: phase I study of checkpoint inhibitors anti-CTLA-4, anti-PD-1, the combination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2018;36(15_suppl):2053. doi:10.1200/JCO.2018.36.15_suppl.2053
  • Lee JB, Ha SJ, Kim HR. Clinical insights into novel immune checkpoint inhibitors. Front Pharmacol. 2021;12:681320. doi:10.3389/fphar.2021.681320
  • Zhai L, Lauing KL, Chang AL, et al. The role of IDO in brain tumor immunotherapy. J Neurooncol. 2015;123(3):395–403. doi:10.1007/s11060-014-1687-8
  • Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H. Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery. 2013;72(6):1031–1039. doi:10.1227/NEU.0b013e31828cf945
  • Wainwright DA, Balyasnikova IV, Chang AL, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18(22):6110–6121. doi:10.1158/1078-0432.CCR-12-2130
  • Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. NIH Public Access. 2010;344:269–278.
  • Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nat Rev Immunol. 2015;15(1):45–56. doi:10.1038/nri3790
  • Harris-Bookman S, Mathios D, Martin AM, et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer. 2018;143(12):3201–3208. doi:10.1002/ijc.31661
  • Lim M, Ye X, Piotrowski AF, et al. Updated safety phase I trial of anti-LAG-3 alone and in combination with anti-PD-1 in patients with recurrent GBM. J Clin Oncol. 2020;38(15_suppl):2512. doi:10.1200/JCO.2020.38.15_suppl.2512
  • Lynes J, Jackson S, Sanchez V, et al. Cytokine microdialysis for real-time immune monitoring in glioblastoma patients undergoing checkpoint blockade. Neurosurgery. 2019;84(4):945–953. doi:10.1093/neuros/nyy392
  • Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111. doi:10.1111/imr.12520
  • Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–499. doi:10.1038/nri3862
  • Li G, Wang Z, Zhang C, et al. Molecular and clinical characterization of TIM-3 in glioma through 1024 samples. OncoImmunology. 2017;6(8):e1328339. doi:10.1080/2162402X.2017.1328339
  • Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–2194. doi:10.1084/jem.20100643
  • Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7(1):10501. doi:10.1038/ncomms10501
  • Kim JE, Patel MA, Mangraviti A, et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res. 2017;23(1):124–136. doi:10.1158/1078-0432.CCR-15-1535
  • Pelloski CE, Ballman KV, Furth AF, et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol. 2007;25(16):2288–2294. doi:10.1200/JCO.2006.08.0705
  • Swartz AM, Li QJ, Sampson JH. Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Future Med. 2014;6:679–690.
  • Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–4729. doi:10.1200/JCO.2010.28.6963
  • Sampson JH, Aldape KD, Archer GE, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology. 2011;13(3):324–333. doi:10.1093/neuonc/noq157
  • Schuster J, Lai RK, Recht LD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology. 2015;17(6):854–861. doi:10.1093/neuonc/nou348
  • Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–1385. doi:10.1016/S1470-2045(17)30517-X
  • Celldex. Data safety and monitoring board recommends celldex’s phase 3 study of RINTEGA® (rindopepimut) in newly diagnosed glioblastoma be discontinued as it is unlikely to meet primary overall survival endpoint in patients with minimal residual disease. Press Release Web site; 2016. Available from: https://ir.celldex.com/news-releases/news-release-details/data-safety-and-monitoring-board-recommends-celldexs-phase-3. Accessed September 19, 2021.
  • Reardon DA, Desjardins A, Vredenburgh JJ, et al. Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (REACT): results of a double-blind randomized phase II trial. Clin Cancer Res. 2020;26(7):1586–1594. doi:10.1158/1078-0432.CCR-18-1140
  • Kaminska B, Czapski B, Guzik R, Król SK, Gielniewski B. Consequences of IDH1/2 mutations in gliomas and an assessment of inhibitors targeting mutated IDH proteins. Molecules. 2019;24:MDPI AG. doi:10.3390/molecules24050968
  • Szopa W, Burley TA, Kramer-Marek G, Kaspera W. Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. BioMed Res Int. 2017;2017. doi:10.1155/2017/8013575
  • Platten M, Schilling D, Bunse L, et al. A mutation-specific peptide vaccine targeting IDH1R132H in patients with newly diagnosed malignant astrocytomas: a first-in-man multicenter phase I clinical trial of the German Neurooncology Working Group (NOA-16). J Clin Oncol. 2018;36(15_suppl):2001. doi:10.1200/JCO.2018.36.15_suppl.2001
  • Platten M, Bunse L, Wick A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 2021;592(7854):463–468. doi:10.1038/s41586-021-03363-z
  • Migliorini D, Dutoit V, Allard M, et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro-Oncology. 2019;21(7):923–933. doi:10.1093/neuonc/noz040
  • Boydell E, Marinari E, Migliorini D, Dietrich PY, Patrikidou A, Dutoit V. Exploratory study of the effect of IMA950/poly-ICLC vaccination on response to bevacizumab in relapsing high-grade glioma patients. Cancers. 2019;11(4):464. doi:10.3390/cancers11040464
  • Rampling R, Peoples S, Mulholland PJ, et al. A cancer research UK first time in human phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22(19):4776–4785. doi:10.1158/1078-0432.CCR-16-0506
  • ClinicalTrials.gov. A study of varlilumab and IMA950 vaccine plus poly-ICLC in patients with WHO grade II low-grade glioma (LGG); 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT02924038. Accessed March 01, 2022.
  • Graner MW, Cumming RI, Bigner DD. The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences. J Neurosci. 2007;27(42):11214–11227. doi:10.1523/JNEUROSCI.3588-07.2007
  • Hermisson M, Strik H, Rieger J, Dichgans J, Meyermann R, Weller M. Expression and functional activity of heat shock proteins in human glioblastoma multiforme. Neurology. 2000;54(6):1357–1365. doi:10.1212/WNL.54.6.1357
  • Crane CA, Han SJ, Ahn B, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res. 2013;19(1):205–214. doi:10.1158/1078-0432.CCR-11-3358
  • Bloch O, Crane CA, Fuks Y, et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol. 2014;16(2):274–279. doi:10.1093/neuonc/not203
  • GP96 heat shock protein-peptide complex vaccine in treating patients with recurrent or progressive glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT00293423. Accessed September 19, 2021.
  • Bloch O, Lim M, Sughrue ME, et al. Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: impact of peripheral PD-L1 expression on response to therapy. Clin Cancer Res. 2017;23(14):3575–3584. doi:10.1158/1078-0432.CCR-16-1369
  • Vaccine therapy with bevacizumab versus bevacizumab alone in treating patients with recurrent glioblastoma multiforme that can be removed by surgery. Available from: https://clinicaltrials.gov/ct2/show/NCT01814813. Accessed September 19, 2021.
  • Bloch O, Shi Q, Anderson SK, et al. Atim-14. Alliance A071101: a phase II randomized trial comparing the efficacy of heat shock protein peptide complex-96 (Hsppc-96) vaccine given with bevacizumab versus bevacizumab alone in the treatment of surgically resectable recurrent glioblastoma. Neuro-Oncology. 2017;19(suppl_6):vi29–vi29. doi:10.1093/neuonc/nox168.110
  • A large-scale research for immunotherapy of glioblastoma with autologous heat shock protein gp96. Available from: https://clinicaltrials.gov/ct2/show/NCT03650257. Accessed September 19, 2021.
  • Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;565(7738):240–245. doi:10.1038/s41586-018-0810-y
  • GAPVAC phase I trial in newly diagnosed glioblastoma patients. Available from: https://clinicaltrials.gov/ct2/show/NCT02149225. Accessed September 19, 2021.
  • Personalized NeoAntigen cancer vaccine with RT plus pembrolizumab for patients with MGMT unmethylated, newly diagnosed GBM. Available from: https://clinicaltrials.gov/ct2/show/NCT02287428. Accessed September 19, 2021.
  • Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–239. doi:10.1038/s41586-018-0792-9
  • Kong Z, Wang Y, Ma W. Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother. 2018;14(2):255–268. doi:10.1080/21645515.2017.1388481
  • Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity. 2014;40:642–656. doi:10.1016/j.immuni.2014.04.016
  • FDA approves provenge - a cellular immunotherapy for men with advanced prostate cancer. @drugscom; 2022. Available from: https://www.drugs.com/newdrugs/fda-approves-provenge-cellular-immunotherapy-men-advanced-prostate-cancer-2130.html. Accessed March 1, 2022.
  • Wang QT, Nie Y, Sun SN, et al. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol Immunother. 2020;69(7):1375–1387. doi:10.1007/s00262-020-02496-w
  • Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):1. doi:10.1186/s12967-017-1374-6
  • Study of a drug [DCVax®-L] to treat newly diagnosed GBM brain cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT00045968. Accessed September 19, 2021.
  • Wick W, van den Bent MJ. First results on the DCVax phase III trial: raising more questions than providing answers. Neuro-Oncology. 2018;20(10):1283–1284. doi:10.1093/neuonc/noy125
  • Expanded access protocol for GBM patients with already manufactured DCVax®-L who have screen-failed protocol 020221. Available from: https://clinicaltrials.gov/ct2/show/NCT02146066. Accessed September 19, 2021.
  • Phuphanich S, Wheeler CJ, Rudnick JD, et al. Phase i trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013;62(1):125–135. doi:10.1007/s00262-012-1319-0
  • A study of ICT-107 immunotherapy in glioblastoma multiforme (GBM). Available from: https://clinicaltrials.gov/ct2/show/NCT01280552. Accessed September 19, 2021.
  • Wen PY, Reardon DA, Armstrong TS, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 2019;25(19):5799–5807. doi:10.1158/1078-0432.CCR-19-0261
  • Phase 3 randomized, double-blind, controlled study of ICT-107 in glioblastoma. Available from: https://clinicaltrials.gov/ct2/show/NCT02546102. Accessed September 19, 2021.
  • Dendritic cell immunotherapy against cancer stem cells in glioblastoma patients receiving standard therapy. Available from: https://clinicaltrials.gov/ct2/show/NCT03548571. Accessed September 19, 2021.
  • Jan CI, Tsai WC, Harn HJ, et al. Predictors of response to autologous dendritic cell therapy in Glioblastoma multiforme. Front Immunol. 2018;9:727. doi:10.3389/fimmu.2018.00727
  • ADCTA for adjuvant immunotherapy in standard treatment of recurrent glioblastoma multiforme (GBM). Available from: https://clinicaltrials.gov/ct2/show/NCT04277221. Accessed September 19, 2021.
  • DC migration study for newly-diagnosed GBM (ELEVATE). 2015. Available from: https://clinicaltrials.gov/ct2/show/NCT02366728. Accessed September 19, 2021.
  • ClinicalTrials.gov. Vaccine therapy in treating patients with newly diagnosed glioblastoma multiforme; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT00639639. Accessed February 18, 2022.
  • Batich KA, Mitchell DA, Healy P, Herndon JE, Sampson JH. Once, twice, three times a finding: reproducibility of dendritic cell vaccine trials targeting cytomegalovirus in glioblastoma. Clin Cancer Res. 2020;26(20):5297–5303. doi:10.1158/1078-0432.CCR-20-1082
  • Batich KA, Reap EA, Archer GE, et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin Cancer Res. 2017;23(8):1898–1909. doi:10.1158/1078-0432.CCR-16-2057
  • NCT02465268 vaccine therapy for the treatment of newly diagnosed glioblastoma multiforme (ATTAC-II); 2015. Available from: https://clinicaltrials.gov/ct2/show/NCT02465268. Accessed September 19, 2021.
  • ITI announces publication of results from 3 ATTAC studies of CMV-specific dendritic cell vaccines for the treatment of GBM; 2020. Available from: https://www.immunomix.com/immunomic-therapeutics-announces-publication-of-results-from-3-attac-studies-of-cmv-specific-dendritic-cell-vaccines-for-The-treatment-of-gbm/. Accessed September 19, 2021.
  • Fecci PE, Sampson JH. The current state of immunotherapy for gliomas: an eye toward the future JNSPG 75th anniversary invited review article. J Neurosurg. 2019;131(3):657–666. doi:10.3171/2019.5.JNS181762
  • Choi BD, Maus MV, June CH, Sampson JH. Immunotherapy for glioblastoma: adoptive T-cell Strategies. Clin Cancer Res. 2019;25(7):2042–2048. doi:10.1158/1078-0432.CCR-18-1625
  • Morgan RA, Johnson LA, Davis JL, et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012;23(10):1043–1053. doi:10.1089/hum.2012.041
  • US Food and Drug Administration. Oncology Nursing Society. FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine release syndrome; 2017. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tisagenlecleucel-b-cell-all-and-tocilizumab-cytokine-release-syndrome. Accessed April 14, 2022.
  • Brown CE, Badie B, Barish ME, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–4072. doi:10.1158/1078-0432.CCR-15-0428
  • Cellular adoptive immunotherapy using genetically modified T-lymphocytes in treating patients with recurrent or refractory high-grade malignant glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT00730613. Accessed September 19, 2021.
  • Jarboe JS, Johnson KR, Choi Y, Lonser RR, Park JK. Expression of interleukin-13 receptor α2 in glioblastoma multiforme: implications for targeted therapies. Cancer Res. 2007;67(17):7983–7986. doi:10.1158/0008-5472.CAN-07-1493
  • Genetically modified T-cells in treating patients with recurrent or refractory malignant glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT02208362. Accessed September 19, 2021.
  • Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–2569. doi:10.1056/NEJMoa1610497
  • Brown CE, Starr R, Weng L, et al. 247. Phase I study of second generation chimeric antigen receptor-engineered t cells targeting IL13Rα2 for the treatment of glioblastoma. Mol Ther. 2016;24:S97. doi:10.1016/S1525-0016(16)33056-8
  • CAR T cell receptor immunotherapy targeting EGFRvIII for patients with malignant gliomas expressing EGFRvIII; 2020. Available from: ClinicalTrials.gov. Accessed April 7, 2022.
  • Goff SL, Morgan RA, Yang JC, et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother. 2019;42(4):126–135. doi:10.1097/CJI.0000000000000260
  • O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399). doi:10.1126/scitranslmed.aaa0984
  • Ahmed N, Brawley V, Hegde M, et al. HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–1101. doi:10.1001/jamaoncol.2017.0184
  • CMV-specific cytotoxic T lymphocytes expressing CAR targeting HER2 in patients with GBM. Available from: https://clinicaltrials.gov/ct2/show/NCT01109095. Accessed September 19, 2021.
  • Memory-enriched T cells in treating patients with recurrent or refractory grade III-IV glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT03389230. Accessed September 19, 2021.
  • Lin Q, Ba T, Ho J, et al. First-in-human trial of EphA2-redirected CAR T-cells in patients with recurrent glioblastoma: a preliminary report of three cases at the starting dose. Front Oncol. 2021;11:694941. doi:10.3389/fonc.2021.694941
  • Phase I EGFR BATs in newly diagnosed glioblastoma. Available from: https://clinicaltrials.gov/ct2/show/NCT03344250. Accessed September 19, 2021.
  • Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology. 2018;20(4):506–518. doi:10.1093/neuonc/nox182
  • Wing A, Fajardo CA, Posey AD, et al. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol Res. 2018;6(5):605–616. doi:10.1158/2326-6066.CIR-17-0314
  • Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37(9):1049–1058. doi:10.1038/s41587-019-0192-1
  • Choe JH, Watchmaker PB, Simic MS, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13(591). doi:10.1126/scitranslmed.abe7378
  • Yeku OO, Purdon TJ, Koneru M, Spriggs D, Brentjens RJ. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep. 2017;7(1):1–14. doi:10.1038/s41598-017-10940-8
  • Kuhn NF, Purdon TJ, Van leeuwen DG, et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell. 2019;35(3):473–488.e476. doi:10.1016/j.ccell.2019.02.006
  • Burger MC, Zhang C, Harter PN, et al. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy. Front Immunol. 2019;10:2683. doi:10.3389/fimmu.2019.02683
  • Pan C, Zhai Y, Li G, Jiang T, Zhang W. NK cell-based immunotherapy and therapeutic perspective in gliomas. Front Oncol. 2021;11:751183. doi:10.3389/fonc.2021.751183
  • Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181–192 e185. doi:10.1016/j.stem.2018.06.002
  • Albinger N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 2021;28(9):513–527. doi:10.1038/s41434-021-00246-w
  • Strassheimer F, Strecker MI, Alekseeva T, et al. OS12.6.A combination therapy of CAR-NK-cells and anti-PD-1 results in high efficacy against advanced-stage glioblastoma in a syngeneic mouse model and induces protective anti-tumor immunity in vivo. Neuro-Oncology. 2021;23(Supplement_2):ii15–ii15. doi:10.1093/neuonc/noab180.049
  • Strassheimer F, Strecker M, Alekseeva T, et al. P06.12 Combination therapy of CAR-NK-cells and anti-PD-1 antibody results in high efficacy against advanced-stage glioblastoma in a syngeneic mouse model and induces protective anti-tumor immunity in vivo. J Immunother Cancer. 2020;8(Suppl2):A46.42–A47.
  • ClinicalTrials.gov. Engineered NK cells containing deleted TGF-BetaR2 and NR3C1 for the treatment of recurrent glioblastoma; 2022. https://clinicaltrials.gov/ct2/show/NCT04991870. Accessed April 7, 2022.
  • Han J, Chu J, Keung Chan W, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep. 2015;5(1):11483. doi:10.1038/srep11483
  • Shaim H, Shanley M, Basar R, et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest. 2021;131(14). doi:10.1172/JCI142116
  • Wang J, Toregrosa-Allen S, Elzey BD, et al. Multispecific targeting of glioblastoma with tumor microenvironment-responsive multifunctional engineered NK cells. Proc Natl Acad Sci U S A. 2021;118(45):e2107507118.
  • Genßler S, Burger MC, Zhang C, et al. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. OncoImmunology. 2016;5(4):e1119354. doi:10.1080/2162402X.2015.1119354
  • Giotta Lucifero A, Luzzi S. Against the resilience of high-grade gliomas: gene therapies (Part II). Brain Sci. 2021;11(8):976. doi:10.3390/brainsci11080976
  • Caffery B, Lee JS, Alexander-Bryant AA. Vectors for glioblastoma gene therapy: viral & non-viral delivery strategies. Nanomaterials. 2019;9(1). doi:10.3390/nano9010105
  • Banerjee K, Nunez FJ, Haase S, et al. Current approaches for glioma gene therapy and virotherapy. Front Mol Neurosci. 2021;14:621831. doi:10.3389/fnmol.2021.621831
  • Wu W, Klockow JL, Zhang M, et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021;171:105780. doi:10.1016/j.phrs.2021.105780
  • Kim SS, Rait A, Kim E, Pirollo KF, Chang EH. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine. 2015;11(2):301–311. doi:10.1016/j.nano.2014.09.005
  • Kumthekar P, Ko CH, Paunesku T, et al. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021;13(584). doi:10.1126/scitranslmed.abb3945
  • DNX-2401 (formerly known as delta-24-RGD-4C) for recurrent malignant gliomas. Available from: https://clinicaltrials.gov/ct2/show/NCT00805376. Accessed September 19, 2021.
  • Lang FF, Conrad C, Gomez-Manzano C, et al. Phase I study of DNX-2401 (delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36(14):1419–1427. doi:10.1200/JCO.2017.75.8219
  • Combination adenovirus + pembrolizumab to trigger immune virus effects. Available from: https://clinicaltrials.gov/ct2/show/NCT02798406. Accessed September 19, 2021.
  • Aiken R, Chen C, Cloughesy T, et al. Atim-33. Interim results of a phase II multi-center study of oncolytic adenovirus Dnx-2401 with pembrolizumab for recurrent glioblastoma; captive study (Keynote-192). Neuro-Oncology. 2019;21(Supplement_6):vi8–vi9. doi:10.1093/neuonc/noz175.032
  • Desjardins A, Gromeier M, Herndon JE, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–161. doi:10.1056/NEJMoa1716435
  • CD147-CART cells in patients with recurrent malignant glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT04045847. Accessed September 19, 2021.
  • ClinicalTrials.gov. Combination of PVSRIPO and atezolizumab for adults with recurrent malignant glioma; 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03973879. Accessed September 19, 2021.
  • A study of a retroviral replicating vector combined with a prodrug administered to patients with recurrent malignant glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT01156584. Accessed September 19, 2021.
  • Study of a retroviral replicating vector to treat patients undergoing surgery for a recurrent malignant brain tumor; 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT01470794. Accessed September 19, 2021.
  • Cloughesy TF, Landolfi J, Hogan DJ, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med. 2016;8(341):341ra375–341ra375. doi:10.1126/scitranslmed.aad9784
  • Cloughesy TF, Landolfi J, Vogelbaum MA, et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro-Oncology. 2018;20(10):1383–1392. doi:10.1093/neuonc/noy075
  • The Toca 5 trial: Toca 511 & Toca FC versus standard of care in patients with recurrent high grade glioma. Available from: https://clinicaltrials.gov/ct2/show/NCT02414165. Accessed September 19, 2021.
  • Tocagen. Toca 5 phase 3 trial results presented at the society for neuro-oncology annual meeting. Available from: https://ir.tocagen.com/news-releases/news-release-details/toca-5-phase-3-trial-results-presented-society-neuro-oncology. Accessed September 19, 2021.
  • Tocagen. Tocagen reports results of Toca 5 phase 3 trial in recurrent brain cancer. Available from: https://ir.tocagen.com/news-releases/news-release-details/tocagen-reports-results-toca-5-phase-3-trial-recurrent-brain. Accessed September 19, 2021.
  • Park AK, Fong Y, Kim SI, et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci Transl Med. 2020;12(559). doi:10.1126/scitranslmed.aaz1863
  • Woroniecka K, Fecci PE. Immuno-synergy? Neoantigen vaccines and checkpoint blockade in glioblastoma. Neuro Oncol. 2020;22(9):1233–1234. doi:10.1093/neuonc/noaa170
  • Woroniecka K, Chongsathidkiet P, Rhodin K, et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res. 2018;24(17):4175–4186. doi:10.1158/1078-0432.CCR-17-1846
  • Nava S, Dossena M, Pogliani S, et al. An optimized method for manufacturing a clinical scale dendritic cell-based vaccine for the treatment of glioblastoma. PLoS One. 2012;7(12):e52301. doi:10.1371/journal.pone.0052301