269
Views
1
CrossRef citations to date
0
Altmetric
Review

Targeted Therapy for Relapsed/Refractory Follicular Lymphoma: Focus on Clinical Utility of Tazemetostat

&
Pages 193-199 | Published online: 27 Feb 2022

References

  • Teras LR, Desantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–459. doi:10.3322/CAAC.21357
  • Freedman A. Follicular lymphoma: 2018 update on diagnosis and management. Am J Hematol. 2018;93(2):296–305. doi:10.1002/AJH.24937
  • Swerdlow SH; International Agency for Research on Cancer, World Health Organization. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. International Agency for Research on Cancer; 2008.
  • Casulo C, Byrtek M, Dawson KL, et al. Early relapse of follicular lymphoma after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone defines patients at high risk for death: an analysis from the national lymphocare study. J Clin Oncol. 2015;33(23):2516. doi:10.1200/JCO.2014.59.7534
  • Alonso-Álvarez S, Manni M, Montoto S, et al. Primary refractory follicular lymphoma: a poor outcome entity with high risk of transformation to aggressive B cell lymphoma. Eur J Cancer. 2021;157:132–139. doi:10.1016/J.EJCA.2021.08.005
  • Link BK, Day BM, Zhou X, et al. Second-line and subsequent therapy and outcomes for follicular lymphoma in the United States: data from the observational National Lymphocare Study. Br J Haematol. 2019;184(4):660–663. doi:10.1111/BJH.15149
  • Gopal AK, Kahl BS, de Vos S, et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–1018. doi:10.1056/NEJMOA1314583
  • Matasar MJ, Capra M, Özcan M, et al. Copanlisib plus rituximab versus placebo plus rituximab in patients with relapsed indolent non-Hodgkin lymphoma (CHRONOS-3): a double-blind, randomised, placebo-controlled, Phase 3 trial. Lancet Oncol. 2021;22(5):678–689. doi:10.1016/S1470-2045(21)00145-5
  • Flinn IW, Miller CB, Ardeshna KM, et al. DYNAMO: a Phase II study of duvelisib (IPI-145) in patients with refractory indolent non-hodgkin lymphoma. J Clin Oncol. 2019;37(11):912–922. doi:10.1200/JCO.18.00915
  • Fowler NH, Samaniego F, Jurczak W, et al. Umbralisib, a dual PI3Kδ/CK1ε inhibitor in patients with relapsed or refractory indolent lymphoma. J Clin Oncol. 2021;39(15):1609–1618. doi:10.1200/JCO.20.03433
  • Jacobson C, Chavez JC, Sehgal AR, et al. Primary analysis of zuma-5: a phase 2 study of Axicabtagene ciloleucel (Axi-Cel) in patients with Relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). Blood. 2020;136(Supplement1):40–41. doi:10.1182/BLOOD-2020-136834
  • Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501. doi:10.1038/nature12912
  • Cao J, Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer. 2020;6(7):580–592. doi:10.1016/J.TRECAN.2020.02.003
  • Bennett RL, Licht JD. Targeting epigenetics in cancer. Annu Rev Pharmacol Toxicol. 2018;58:187–207. doi:10.1146/ANNUREV-PHARMTOX-010716-105106
  • Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303. doi:10.1038/nature10351
  • Green MR, Kihira S, Liu CL, et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci U S A. 2015;112(10):E1116–E1125. doi:10.1073/PNAS.1501199112/-/DCSUPPLEMENTAL
  • Green MR, Gentles AJ, Nair RV, et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood. 2013;121(9):1604. doi:10.1182/BLOOD-2012-09-457283
  • Korfi K, Ali S, Heward JA, Fitzgibbon J. Follicular lymphoma, a B cell malignancy addicted to epigenetic mutations. Epigenetics. 2017;12(5):370. doi:10.1080/15592294.2017.1282587
  • Qi W, Chan H, Teng L, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci. 2012;109(52):21360–21365. doi:10.1073/PNAS.1210371110
  • Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–349. doi:10.1038/nature09784
  • Caganova M, Carrisi C, Varano G, et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest. 2013;123(12):5009. doi:10.1172/JCI70626
  • Béguelin W, Popovic R, Teater M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013;23(5):677. doi:10.1016/J.CCR.2013.04.011
  • Bödör C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013;122(18):3165–3168. doi:10.1182/BLOOD-2013-04-496893
  • Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–185. doi:10.1038/ng.518
  • Green MR. Chromatin modifying gene mutations in follicular lymphoma. Blood. 2018;131(6):595. doi:10.1182/BLOOD-2017-08-737361
  • Wang X, Brea LT, Yu J. Immune modulatory functions of EZH2 in the tumor microenvironment: implications in cancer immunotherapy. Am J Clin Exp Urol. 2019;7(2):85. PMC6526357/.
  • Wang D, Quiros J, Mahuron K, et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 2018;23(11):3262. doi:10.1016/J.CELREP.2018.05.050
  • Peng D, Kryczek I, Nagarsheth N, et al. Epigenetic silencing of Th1 type chemokines shapes tumor immunity and immunotherapy. Nature. 2015;527(7577):249. doi:10.1038/NATURE15520
  • Nagarsheth N, Peng D, Kryczek I, et al. PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res. 2016;76(2):275–282. doi:10.1158/0008-5472.CAN-15-1938
  • Béguelin W, Teater M, Meydan C, et al. Mutant EZH2 induces a pre-malignant lymphoma Niche by reprogramming the immune response. Cancer Cell. 2020;37(5):655–673.e11. doi:10.1016/J.CCELL.2020.04.004
  • Garapaty-Rao S, Nasveschuk C, Gagnon A, et al. Identification of EZH2 and EZH1 small molecule inhibitors with selective impact on diffuse large B cell lymphoma cell growth. Chem Biol. 2013;20(11):1329–1339. doi:10.1016/J.CHEMBIOL.2013.09.013
  • Diaz E, Machutta CA, Chen S, et al. Development and validation of reagents and assays for EZH2 peptide and nucleosome high-throughput screens. J Biomol Screen. 2012;17(10):1279–1292. doi:10.1177/1087057112453765
  • Bradley WD, Arora S, Busby J, et al. EZH2 inhibitor efficacy in non-Hodgkin’s lymphoma does not require suppression of H3K27 monomethylation. Chem Biol. 2014;21(11):1463–1475. doi:10.1016/J.CHEMBIOL.2014.09.017
  • McCabe MT, Ott HM, Ganji G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–112. doi:10.1038/nature11606
  • Knutson SK, Kawano S, Minoshima Y, et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther. 2014;13(4):842–854. doi:10.1158/1535-7163.MCT-13-0773
  • Italiano A, Soria JC, Toulmonde M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649–659. doi:10.1016/S1470-2045(18)30145-1
  • Morschhauser F, Tilly H, Chaidos A, et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 2020;21(11):1433–1442. doi:10.1016/S1470-2045(20)30441-1
  • Munakata W, Shirasugi Y, Tobinai K, et al. Phase 1 study of tazemetostat in Japanese patients with relapsed or refractory B‐cell lymphoma. Cancer Sci. 2021;112(3):1123. doi:10.1111/CAS.14822
  • Izutsu K, Ando K, Nishikori M, et al. Phase II study of tazemetostat for relapsed or refractory B‐cell non‐Hodgkin lymphoma with EZH2 mutation in Japan. Cancer Sci. 2021;112(9):3627. doi:10.1111/CAS.15040
  • Sarkozy C, Morschhauser F, Dubois S, et al. A LYSA phase Ib study of tazemetostat (EPZ-6438) plus R-CHOP in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) with poor prognosis features. Clin Cancer Res. 2020;26(13):3145–3153. doi:10.1158/1078-0432.CCR-19-3741
  • Palomba ML, Cartron G, Popplewell L, et al. Safety and clinical activity of atezolizumab in combination with tazemetostat in relapsed or refractory diffuse large B-cell lymphoma: primary analysis of a phase 1B study. Hematol Oncol. 2019;37:517–519. doi:10.1002/HON.203_2631
  • Tong KI, Yoon S, Isaev K, et al. Combined EZH2 inhibition and IKAROS degradation leads to enhanced antitumor activity in diffuse large B-cell lymphoma. Clin Cancer Res. 2021;27(19):5401–5414. doi:10.1158/1078-0432.CCR-20-4027
  • Batlevi C, Park S, Nastoupil L, et al. Interim analysis of the randomized Phase 1b/3 study evaluating the safety and efficacy of tazemetostat plus lenalidomide and rituximab in patients with relapsed/refractory follicular lymphoma. Blood. 2021;138(Supplement 1):2207. doi:10.1182/blood-2021-148199
  • Patel K, Bailey N, Miller K, et al. A phase 2, single-arm, open-label, multicenter study of tazemetostat in combination with rituximab for the treatment of relapsed or refractory follicular lymphoma. Blood. 2021;138(Supplement 1):3571. doi:10.1182/blood-2021-148199
  • Jurinovic V, Passerini V, Oestergaard MZ, et al. Evaluation of the m7-FLIPI in patients with follicular lymphoma treated within the Gallium trial: EZH2 mutation status may be a predictive marker for differential efficacy of chemotherapy. Blood. 2019;134(Supplement_1):122. doi:10.1182/BLOOD-2019-130208