76
Views
4
CrossRef citations to date
0
Altmetric
Review

Targeted Treatment of Non-Small Cell Lung Cancer: Focus on Capmatinib with Companion Diagnostics

ORCID Icon, , , &
Pages 5321-5331 | Published online: 23 Nov 2021

References

  • Drilon A, Cappuzzo F, Ou S-HI, Camidge DR. Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol. 2017;12(1):15–26. doi:10.1016/j.jtho.2016.10.014
  • Foundation medicine receives FDA approval for FoundationOne®CDx as the companion diagnostic for tabrectaTM (capmatinib), the only FDA-approved MET inhibitor for patients with metastatic non-small cell lung cancer with METex14. Available from: https://www.foundationmedicine.com/press-releases/0f19426e-6c6b-4d75-8801-789b6f603eb2. Accessed November 6, 2021.
  • Organ SL, Tsao M-S. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–S19. doi:10.1177/1758834011422556
  • Sierra JR, Tsao M-S. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3(1 Suppl):S21–S35. doi:10.1177/1758834011422557
  • Zhang Y, Xia M, Jin K, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17(1):45. doi:10.1186/s12943-018-0796-y
  • Pilotto S, Gkountakos A, Carbognin L, Scarpa A, Tortora G, Bria E. MET exon 14 juxtamembrane splicing mutations: clinical and therapeutical perspectives for cancer therapy. Ann Transl Med. 2017;5(1):2. doi:10.21037/atm.2016.12.33
  • Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol. 2009;4(1):5–11. doi:10.1097/JTO.0b013e3181913e0e
  • Davies KD, Lomboy A, Lawrence CA, et al. DNA-based versus RNA-based detection of MET exon 14 skipping events in lung cancer. J Thorac Oncol. 2019;14(4):737–741. doi:10.1016/j.jtho.2018.12.020
  • Drilon A. MET exon 14 alterations in lung cancer: exon skipping extends half-life. Clin Cancer Res. 2016;22(12):2832–2834. doi:10.1158/1078-0432.CCR-16-0229
  • Noonan SA, Berry L, Lu X, et al. Identifying the appropriate FISH criteria for defining MET copy number-driven lung adenocarcinoma through oncogene overlap analysis. J Thorac Oncol. 2016;11(8):1293–1304. doi:10.1016/j.jtho.2016.04.033
  • Vuong HG, Ho ATN, Altibi AMA, Nakazawa T, Katoh R, Kondo T. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer - A systematic review and meta-analysis. Lung Cancer Amst Neth. 2018;123:76–82. doi:10.1016/j.lungcan.2018.07.006
  • Go H, Jeon YK, Park HJ, Sung S-W, Seo J-W, Chung DH. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol. 2010;5(3):305–313. doi:10.1097/JTO.0b013e3181ce3d1d
  • Guo B, Cen H, Tan X, Liu W, Ke Q. Prognostic value of MET gene copy number and protein expression in patients with surgically resected non-small cell lung cancer: a meta-analysis of published literatures. Coleman WB, ed. PLoS One. 2014;9(6):e99399. doi:10.1371/journal.pone.0099399
  • Awad MM, Oxnard GR, Jackman DM, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-Dependent MET genomic amplification and c-Met overexpression. J Clin Oncol. 2016;34(7):721–730. doi:10.1200/JCO.2015.63.4600
  • Liu X, Jia Y, Stoopler MB, et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 2016;34(8):794–802. doi:10.1200/JCO.2015.62.0674
  • Schrock AB, Frampton GM, Suh J, et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J Thorac Oncol. 2016;11(9):1493–1502. doi:10.1016/j.jtho.2016.06.004
  • Schildhaus H-U, Schultheis AM, Rüschoff J, et al. MET amplification status in therapy-naïve adeno- and squamous cell carcinomas of the lung. Clin Cancer Res. 2015;21(4):907–915. doi:10.1158/1078-0432.CCR-14-0450
  • Cappuzzo F, Jänne PA, Skokan M, et al. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol. 2009;20(2):298–304. doi:10.1093/annonc/mdn635
  • Tong JH, Yeung SF, Chan AWH, et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;22(12):3048–3056. doi:10.1158/1078-0432.CCR-15-2061
  • Ali A, Goffin JR, Arnold A, Ellis PM. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr Oncol Tor Ont. 2013;20(4):e300–306. doi:10.3747/co.20.1481
  • Awad MM, Leonardi GC, Kravets S, et al. Impact of MET inhibitors on survival among patients with non-small cell lung cancer harboring MET exon 14 mutations: a retrospective analysis. Lung Cancer Amst Neth. 2019;133:96–102. doi:10.1016/j.lungcan.2019.05.011
  • Liu X, Wang Q, Yang G, et al. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin Cancer Res. 2011;17(22):7127–7138. doi:10.1158/1078-0432.CCR-11-1157
  • Baltschukat S, Engstler BS, Huang A, et al. Capmatinib (INC280) is active against models of non-small cell lung cancer and other cancer types with defined mechanisms of MET activation. Clin Cancer Res. 2019;25(10):3164–3175. doi:10.1158/1078-0432.CCR-18-2814
  • TABRECTATM (capmatinib) tablets, for oral use. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf. Accessed November 6, 2021.
  • Lara MS, Holland WS, Chinn D, et al. Preclinical evaluation of MET inhibitor INC-280 with or without the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung cancer. Clin Lung Cancer. 2017;18(3):281–285. doi:10.1016/j.cllc.2016.11.006
  • Shaker ME, Shaaban AA, El-Shafey MM, El-Mesery ME. The selective c-Met inhibitor capmatinib offsets cisplatin-nephrotoxicity and doxorubicin-cardiotoxicity and improves their anticancer efficacies. Toxicol Appl Pharmacol. 2020;398:115018. doi:10.1016/j.taap.2020.115018
  • Schuler M, Berardi R, Lim W-T, et al. Molecular correlates of response to capmatinib in advanced non-small-cell lung cancer: clinical and biomarker results from a phase I trial. Ann Oncol. 2020;31(6):789–797. doi:10.1016/j.annonc.2020.03.293
  • Bang Y, Su W, Schuler M, et al. Phase 1 study of capmatinib in MET‐positive solid tumor patients: dose escalation and expansion of selected cohorts. Cancer Sci. 2020;111(2):536–547. doi:10.1111/cas.14254
  • Wolf J, Seto T, Han J-Y, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med. 2020;383(10):944–957. doi:10.1056/NEJMoa2002787
  • Morris TA, Khoo C, Solomon BJ. Targeting ROS1 rearrangements in non-small cell lung cancer: crizotinib and newer generation tyrosine kinase inhibitors. Drugs. 2019;79(12):1277–1286. doi:10.1007/s40265-019-01164-3
  • Choi W, Park S-Y, Lee Y, et al. The clinical impact of capmatinib in the treatment of advanced non-small cell lung cancer with MET exon 14 skipping mutation or gene amplification. Cancer Res Treat. 2021;53(4):1024–1032. doi:10.4143/crt.2020.1331
  • Dagogo-Jack I, Moonsamy P, Gainor JF, et al. A phase 2 study of capmatinib in patients with MET-altered lung cancer previously treated with a MET inhibitor. J Thorac Oncol. 2021;16(5):850–859. doi:10.1016/j.jtho.2021.01.1605
  • FoundationOne®Liquid CDx. Available from: https://www.foundationmedicine.com/test/foundationone-liquid-cdx. Accessed November 6, 2021.
  • Johnston KM, Sheffield BS, Yip S, Lakzadeh P, Qian C, Nam J. Comprehensive genomic profiling for non-small-cell lung cancer: health and budget impact. Curr Oncol Tor Ont. 2020;27(6):e569–e577. doi:10.3747/co.27.5995
  • Inagaki C, Maeda D, Hatake K, et al. Clinical utility of next-generation sequencing-based panel testing under the universal health-care system in Japan: a retrospective analysis at a single university hospital. Cancers. 2021;13(5):1121. doi:10.3390/cancers13051121
  • Takeda M, Takahama T, Sakai K, et al. Clinical application of the FoundationOne CDx assay to therapeutic decision-making for patients with advanced solid tumors. Oncologist. 2021;26(4):e588–e596. doi:10.1002/onco.13639
  • Sharaf R, Pavlick DC, Frampton GM, et al. FoundationOne CDx testing accurately determines whole arm 1p19q codeletion status in gliomas. Neuro-Oncol Adv. 2021;3(1):vdab017. doi:10.1093/noajnl/vdab017
  • Kawaji H, Kubo M, Yamashita N, et al. Comprehensive molecular profiling broadens treatment options for breast cancer patients. Cancer Med. 2021;10(2):529–539. doi:10.1002/cam4.3619
  • Kimura R, Ohtsuka T, Kubo M, et al. FoundationOne® CDx gene profiling in Japanese pancreatic ductal adenocarcinoma patients: a single-institution experience. Surg Today. 2021;51(4):619–626. doi:10.1007/s00595-020-02123-2
  • Wu Y-L, Zhang L, Kim D-W, et al. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol. 2018;36(31):3101–3109. doi:10.1200/JCO.2018.77.7326
  • Lyudmila Bazhenova, Joshua Bauml, Benjamin Levy. MET Inhibitors in NSCLC: Toxicity Management. Presented at: April 19, 2019; OncLive. Available from: https://www.onclive.com/view/met-inhibitors-in-nsclc-toxicity-management.
  • Safety, dosing, and administration tabrecta. Available from: https://www.hcp.novartis.com/siteassets/tabrecta/tabrecta-hcp-safety-dosing-guide.pdf. Accessed November 6, 2021.
  • Study of capmatinib efficacy in comparison with docetaxel in previously treated participants with non-small cell lung cancer harboring MET exon 14 skipping mutation (GeoMETry-III). Available from: https://clinicaltrials.gov/ct2/show/NCT04427072. Accessed November 6, 2021.
  • Gautschi O, Menon R, Bertrand M, Murer C, Diebold J. Capmatinib and osimertinib combination therapy for EGFR-mutant lung adenocarcinoma. J Thorac Oncol. 2020;15(1):e13–e15. doi:10.1016/j.jtho.2019.07.027
  • Study evaluating efficacy and safety of capmatinib in combination with osimertinib in adult subjects with non-small cell lung cancers as second line therapy (GEOMETRY-E). Available from: https://clinicaltrials.gov/ct2/show/NCT04816214. Accessed November 6, 2021.
  • Tan DS-W, Leighl NB, Riely GJ, et al. Safety and efficacy of nazartinib (EGF816) in adults with EGFR-mutant non-small-cell lung carcinoma: a multicentre, open-label, phase 1 study. Lancet Respir Med. 2020;8(6):561–572. doi:10.1016/S2213-2600(19)30267-X
  • Jia Y, Juarez J, Li J, et al. EGF816 exerts anticancer effects in non-small cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the EGF receptor. Cancer Res. 2016;76(6):1591–1602. doi:10.1158/0008-5472.CAN-15-2581
  • Study of safety and efficacy of EGFR-TKI EGF816 in combination with cMET inhibitor INC280 in non-small cell lung cancer patients with EGFR mutation. Available from: https://www.clinicaltrials.gov/ct2/show/study/NCT02335944. Accessed November 6, 2021.
  • Li H, Li C-W, Li X, et al. MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1. Gastroenterology. 2019;156(6):1849–1861.e13. doi:10.1053/j.gastro.2019.01.252
  • Felip E. Efficacy and safety of capmatinib plus nivolumab in pretreated patients with EGFR wild-type non–small cell lung cancer. Poster presented at the: 2020 World Conference on Lung Cancer; January 28; 2021; IASLC. Available from: https://library.iaslc.org/conference-program?product_id=20&author=&category=&date=&session_type=&session=&presentation=&keyword=capmatinib&cme=undefined&.
  • Study of capmatinib and spartalizumab/placebo in advanced NSCLC patients with MET exon 14 skipping mutations. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04323436. Accessed November 6, 2021.
  • Safety and efficacy of capmatinib (INC280) plus pembrolizumab vs pembrolizumab alone in NSCLC with PD-L1≥ 50%. Available from: https://clinicaltrials.gov/ct2/show/study/NCT04139317. Accessed November 6, 2021.
  • Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26(1):47–51. doi:10.1038/s41591-019-0716-8
  • Camidge DR, Otterson GA, Clark JW, et al. Crizotinib in patients with MET-amplified NSCLC. J Thorac Oncol. 2021;16(6):1017–1029. doi:10.1016/j.jtho.2021.02.010
  • D’Arcangelo M, Tassinari D, De Marinis F, et al. P2.01-15 phase II single arm study of CABozantinib in non-small cell lung cancer patients with MET deregulation (CABinMET). J Thorac Oncol. 2019;14(10):S644. doi:10.1016/j.jtho.2019.08.1359
  • Paik PK, Felip E, Veillon R, et al. Tepotinib in non–small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med. 2020;383(10):931–943. doi:10.1056/NEJMoa2004407
  • Wu Y-L, Cheng Y, Zhou J, et al. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): an open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir Med. 2020;8(11):1132–1143. doi:10.1016/S2213-2600(20)30154-5
  • Roth KG, Mambetsariev I, Salgia R. Prolonged survival and response to tepotinib in a non-small-cell lung cancer patient with brain metastases harboring MET exon 14 mutation: a research report. Cold Spring Harb Mol Case Stud. 2020;6(6):a005785. doi:10.1101/mcs.a005785
  • Blanc-Durand F, Alameddine R, Iafrate AJ, et al. Tepotinib efficacy in a patient with non-small cell lung cancer with brain metastasis harboring an HLA-DRB1-MET gene fusion. Oncologist. 2020;25(11):916–920. doi:10.1634/theoncologist.2020-0502
  • Takamori S, Matsubara T, Fujishita T, et al. Dramatic intracranial response to tepotinib in a patient with lung adenocarcinoma harboring MET exon 14 skipping mutation. Thorac Cancer. 2021;12(6):978–980. doi:10.1111/1759-7714.13871
  • FDA grants accelerated approval to tepotinib for metastatic non-small cell lung cancer. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-tepotinib-metastatic-non-small-cell-lung-cancer. Accessed November 6, 2021.
  • Lu S, Fang J, Li X, et al. Phase II study of savolitinib in patients (pts) with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations (METex14+). J Clin Oncol. 2020;38(15_suppl):9519. doi:10.1200/JCO.2020.38.15_suppl.9519
  • Sequist LV, Han J-Y, Ahn M-J, et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020;21(3):373–386. doi:10.1016/S1470-2045(19)30785-5
  • Yang J, Zhou Q, Chen H, et al. Abstract CT127: a phase I study of cMET inhibitor bozitinib in patients with advanced NSCLC harboring cMET alterations. Tumor Biology. American Association for Cancer Research; 2020:CT127–CT127. doi:10.1158/1538-7445.AM2020-CT127
  • Yan SB, Um SL, Peek VL, et al. MET-targeting antibody (emibetuzumab) and kinase inhibitor (merestinib) as single agent or in combination in a cancer model bearing MET exon 14 skipping. Invest New Drugs. 2018;36(4):536–544. doi:10.1007/s10637-017-0545-x
  • Engstrom LD, Aranda R, Lee M, et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET exon 14 mutations and overcomes mutation-mediated resistance to type I MET inhibitors in nonclinical models. Clin Cancer Res. 2017;23(21):6661–6672. doi:10.1158/1078-0432.CCR-17-1192
  • Reungwetwattana T, Liang Y, Zhu V, Ou S-HI. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: the why, the how, the who, the unknown, and the inevitable. Lung Cancer. 2017;103:27–37. doi:10.1016/j.lungcan.2016.11.011
  • Phase 2 study of MGCD265 in patients with non-small cell lung cancer with activating genetic alterations in MET. Available from: https://clinicaltrials.gov/ct2/show/results/NCT02544633. Accessed November 6, 2021.
  • Merestinib in non-small cell lung cancer and solid tumors. Available from: https://clinicaltrials.gov/ct2/show/study/NCT02920996. Accessed November 6, 2021.
  • Camidge DR. CT179 - Telisotuzumab vedotin (teliso-v) monotherapy in patients with previously treated c-Met+ advanced non-small cell lung cancer. Poster presented at the: AACR Annual Meeting 2021; April 10; 2021; IASLC. Available from: https://www.abstractsonline.com/pp8/#!/9325/presentation/5250.
  • Guo MZ, Marrone KA, Spira A, Freeman K, Scott SC. Amivantamab: a potent novel EGFR/c-MET bispecific antibody therapy for EGFR-mutated non-small cell lung cancer. Oncol Haematol. 2021;17(1):42–47. doi:10.17925/OHR.2021.17.1.42
  • Scagliotti G, Moro-Sibilot D, Kollmeier J, et al. A randomized-controlled phase 2 study of the MET antibody emibetuzumab in combination with erlotinib as first-line treatment for EGFR mutation–positive NSCLC patients. J Thorac Oncol. 2020;15(1):80–90. doi:10.1016/j.jtho.2019.10.003
  • Rowlands T, Boyapati A, Li S, et al. A phase I/II study of REGN5093, a MET x MET bispecific antibody, in patients with MET-altered advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2020;38(15_suppl):TPS9628. doi:10.1200/JCO.2020.38.15_suppl.TPS9628
  • Poulsen TT, Grandal MM, Skartved NJØ, et al. Sym015: a highly efficacious antibody mixture against MET -amplified tumors. Clin Cancer Res. 2017;23(19):5923–5935. doi:10.1158/1078-0432.CCR-17-0782
  • Camidge DR, Janku F, Martinez-Bueno A, et al. Safety and preliminary clinical activity of the MET antibody mixture, Sym015 in advanced non-small cell lung cancer (NSCLC) patients with MET amplification/exon 14 deletion (MET Amp/Ex14∆). J Clin Oncol. 2020;38(15_suppl):9510. doi:10.1200/JCO.2020.38.15_suppl.9510
  • Qi J, McTigue MA, Rogers A, et al. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Res. 2011;71(3):1081–1091. doi:10.1158/0008-5472.CAN-10-1623
  • Tiedt R, Degenkolbe E, Furet P, et al. A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. Cancer Res. 2011;71(15):5255–5264. doi:10.1158/0008-5472.CAN-10-4433
  • Recondo G, Bahcall M, Spurr LF, et al. Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET exon 14–mutant NSCLC. Clin Cancer Res. 2020;26(11):2615–2625. doi:10.1158/1078-0432.CCR-19-3608
  • Rotow JK, Gui P, Wu W, et al. Co-occurring alterations in the RAS–MAPK pathway limit response to MET inhibitor treatment in MET exon 14 skipping mutation-positive lung cancer. Clin Cancer Res. 2020;26(2):439–449. doi:10.1158/1078-0432.CCR-19-1667
  • Suzawa K, Offin M, Lu D, et al. Activation of KRAS mediates resistance to targeted therapy in MET exon 14–mutant non–small cell lung cancer. Clin Cancer Res. 2019;25(4):1248–1260. doi:10.1158/1078-0432.CCR-18-1640
  • Pennacchietti S, Cazzanti M, Bertotti A, et al. Microenvironment-derived HGF overcomes genetically determined sensitivity to anti-MET drugs. Cancer Res. 2014;74(22):6598–6609. doi:10.1158/0008-5472.CAN-14-0761
  • Bahcall M, Sim T, Paweletz CP, et al. Acquired MET D1228V mutation and resistance to MET inhibition in lung cancer. Cancer Discov. 2016;6(12):1334–1341. doi:10.1158/2159-8290.CD-16-0686
  • Mok TSK, Park K, Geater SL, et al. A randomized phase (PH) 2 study with exploratory biomarker analysis of ficlatuzumab (F) a humanized hepatocyte growth factor (HGF) inhibitory MAB in combination with gefitinib (G) versus G in asian patients (PTS) with lung adenocarcinoma (LA). Ann Oncol. 2012;23:ix391. doi:10.1016/S0923-7534(20)33782-0