66
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Genetic Variability in the microRNA Binding Sites of BMPR1B, TGFBR1, IQGAP1, KRAS, SETD8 and RYR3 and Risk of Breast Cancer in Colombian Women

, ORCID Icon, ORCID Icon, , &
Pages 12281-12287 | Published online: 30 Nov 2020

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • Weitzel JN, Blazer KR, MacDonald DJ, Culver JO, Offit K. Genetics, genomics, and cancer risk assessment: state of the art and future directions in the era of personalized medicine. CA Cancer J Clin. 2011;61(5):327–359.21858794
  • Lynch HT, Lynch JF. Breast cancer genetics in an oncology clinic: 328 consecutive patients. Cancer Genet Cytogenet. 1986;22(4):369–371. doi:10.1016/0165-4608(86)90032-43731052
  • Ghoussaini M, Pharoah PD. Polygenic susceptibility to breast cancer: current state-of-the-art. Future Oncol. 2009;5(5):689–701. doi:10.2217/fon.09.2919519208
  • Michailidou K, Lindstrom S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–94.29059683
  • Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40(1):17–22. doi:10.1038/ng.2007.5318163131
  • Wendt C, Margolin S. Identifying breast cancer susceptibility genes - a review of the genetic background in familial breast cancer. Acta Oncol. 2019;58(2):135–146. doi:10.1080/0284186X.2018.152942830606073
  • Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–355. doi:10.1038/nature0287115372042
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi:10.1016/S0092-8674(04)00045-514744438
  • Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402. doi:10.1038/nrc286720495573
  • Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Pers Med. 2014;7:173–191.25114582
  • Malhotra P, Read GH, Weidhaas JB. Breast Cancer and miR-SNPs: the Importance of miR Germ-Line Genetics. Noncoding RNA. 2019;5(1).
  • Saetrom P, Biesinger J, Li SM, et al. A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res. 2009;69(18):7459–7465. doi:10.1158/0008-5472.CAN-09-120119738052
  • Nicoloso MS, Sun H, Spizzo R, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70(7):2789–2798. doi:10.1158/0008-5472.CAN-09-354120332227
  • Hollestelle A, Pelletier C, Hooning M, et al. Prevalence of the variant allele rs61764370 T>G in the 3ʹUTR of KRAS among Dutch BRCA1, BRCA2 and non-BRCA1/BRCA2 breast cancer families. Breast Cancer Res Treat. 2011;128(1):79–84. doi:10.1007/s10549-010-1080-z20676756
  • Ovarian Cancer Association Consortium BCAC, Consortium of Modifiers of B, Brca, et al. No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecol Oncol. 2016;141(2):386–401.25940428
  • Paranjape T, Heneghan H, Lindner R, et al. A 3ʹ-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncol. 2011;12(4):377–386. doi:10.1016/S1470-2045(11)70044-421435948
  • Pilarski R, Patel DA, Weitzel J, et al. The KRAS-variant is associated with risk of developing double primary breast and ovarian cancer. PLoS One. 2012;7(5):e37891. doi:10.1371/journal.pone.003789122662244
  • Zheng H, Song F, Zhang L, et al. Genetic variants at the miR-124 binding site on the cytoskeleton-organizing IQGAP1 gene confer differential predisposition to breast cancer. Int J Oncol. 2011;38(4):1153–1161.21318219
  • Song F, Zheng H, Liu B, et al. An miR-502-binding site single-nucleotide polymorphism in the 3ʹ-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin Cancer Res. 2009;15(19):6292–6300. doi:10.1158/1078-0432.CCR-09-082619789321
  • Zhang L, Liu Y, Song F, et al. Functional SNP in the microRNA-367 binding site in the 3ʹUTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci U S A. 2011;108(33):13653–13658.21810988
  • Pineros M, Cendales R, Murillo R, Wiesner C, Tovar S. [Pap test coverage and related factors in Colombia, 2005]. Rev Salud Publica (Bogota). 2007;9(3):327–341. Spanish.18026598
  • Torres D, Bermejo JL, Rashid MU, et al. Prevalence and penetrance of BRCA1 and BRCA2 germline mutations in colombian breast cancer patients. Sci Rep. 2017;7(1):4713. doi:10.1038/s41598-017-05056-y28680148
  • Torres D, Lorenzo Bermejo J, Garcia Mesa K, et al. Interaction between genetic ancestry and common breast cancer susceptibility variants in Colombian women. Int J Cancer. 2019;144(9):2181–2191. doi:10.1002/ijc.3202330485434
  • Laitinen J, Samarut J, Holtta E. A nontoxic and versatile protein salting-out method for isolation of DNA. Biotechniques. 1994;17(2):316,318, 320–322.7980935
  • Ruiz-Linares A, Adhikari K, Acuna-Alonzo V, et al. Admixture in Latin America: geographic structure, phenotypic diversity and self-perception of ancestry based on 7342 individuals. PLoS Genet. 2014;10(9):e1004572. doi:10.1371/journal.pgen.100457225254375
  • Westfall PH, Zaykin DV, Young SS. Multiple tests for genetic effects in association studies. Methods Mol Biol. 2002;184:143–168.11889711