270
Views
35
CrossRef citations to date
0
Altmetric
Review

The Potential Role of N6-Methyladenosine (m6A) Demethylase Fat Mass and Obesity-Associated Gene (FTO) in Human Cancers

, ORCID Icon &
Pages 12845-12856 | Published online: 15 Dec 2020

References

  • Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–726. doi:10.1038/ng204817496892
  • Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–894. doi:10.1126/science.114163417434869
  • Tschritter O, Preissl H, Yokoyama Y, Machicao F, Häring HU, Fritsche A. Variation in the FTO gene locus is associated with cerebrocortical insulin resistance in humans. Diabetologia. 2007;50:2602–2603. doi:10.1007/s00125-007-0839-117917711
  • Brennan P, McKay J, Moore L, et al. Obesity and cancer: mendelian randomization approach utilizing the FTO genotype. Int J Epidemiol. 2009;38(4):971–975. doi:10.1093/ije/dyp16219542184
  • Kaklamani V, Yi N, Sadim M, et al. The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med Genet. 2011;12:52. doi:10.1186/1471-2350-12-5221489227
  • da Cunha PA, de Carlos Back LK, Sereia AF, et al. Interaction between obesity-related genes, FTO and MC4R, associated to an increase of breast cancer risk. Mol Biol Rep. 2013;40:6657–6664. doi:10.1007/s11033-013-2780-324091943
  • Yamaji T, Iwasaki M, Sawada N, Shimazu T. Fat mass and obesity-associated gene polymorphisms, pre-diagnostic plasma adipokine levels and the risk of colorectal cancer: the Japan Public Health Center-based Prospective Study. 2020;15:e0229005.
  • Xu D, Shao W, Jiang Y, Wang X, Liu Y, Liu X. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol Rep. 2017;38:2285–2292. doi:10.3892/or.2017.590428849183
  • Lin Y, Ueda J, Yagyu K, et al. Association between variations in the fat mass and obesity-associated gene and pancreatic cancer risk: a case-control study in Japan. BMC Cancer. 2013;13:337. doi:10.1186/1471-2407-13-33723835106
  • Lewis SJ, Murad A, Chen L, et al. Associations between an obesity related genetic variant (FTO rs9939609) and prostate cancer risk. PLoS One. 2010;5:e13485. doi:10.1371/journal.pone.001348520976066
  • Li J, Zhu L, Shi Y, Liu J, Lin L, Chen X. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res. 2019;11:6084–6092.31632576
  • Zhe H, Li J, Han Y, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Mol Carcinog. 2019;512:479–485.
  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–d7. doi:10.1093/nar/gkx103029106616
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71:3971–3975. doi:10.1073/pnas.71.10.39714372599
  • Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29:1343–1355. doi:10.1101/gad.262766.11526159994
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–206. doi:10.1038/nature1111222575960
  • Maity A, Das B. N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases. 2016;283:1607–1630.
  • Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613. doi:10.1016/j.biopha.2019.10861330784918
  • Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35:677–91.e10. doi:10.1016/j.ccell.2019.03.00630991027
  • Shen XP, Ling X, Lu H, Zhou CX, Zhang JK, Yu Q. Low expression of microRNA-1266 promotes colorectal cancer progression via targeting FTO. Eur Rev Med Pharmacol Sci. 2018;22:8220–8226.30556861
  • Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R, Wang YY. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. 2018;57:590–597.
  • Tang X, Liu S, Chen D, Zhao Z, Zhou J. The role of the fat mass and obesity-associated protein in the proliferation of pancreatic cancer cells. Oncol Lett. 2019;17:2473–2478.30719115
  • Doaei S, Gholamalizadeh M, Akbari ME, et al. Dietary carbohydrate promotes cell survival in cancer via the up-regulation of fat mass and obesity-associated gene expression level. BJU Int. 2019;26:8–17.
  • Liu S, Huang M, Chen Z, et al. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res. 2020;389:111894.32035950
  • Zhang Z, Zhou D, Lai Y, et al. Estrogen induces endometrial cancer cell proliferation and invasion by regulating the fat mass and obesity-associated gene via PI3K/AKT and MAPK signaling pathways. Cancer Lett. 2012;319:89–97. doi:10.1016/j.canlet.2011.12.03322222214
  • Su R, Dong L, Li Y, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38(1):79–96.e11. doi:10.1016/j.ccell.2020.04.01732531268
  • Huang H, Wang Y, Kandpal M. FTO-dependent N6-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. 2020.
  • Gaudet MM, Yang HP, Bosquet JG, et al. No association between FTO or HHEX and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev. 2010;19(8):2106–2109. doi:10.1158/1055-9965.EPI-10-051520647405
  • Hernández-Caballero ME, Sierra-Ramírez JA. Single nucleotide polymorphisms of the FTO gene and cancer risk: an overview. Mol Biol Rep. 2015;42(3):699–704. doi:10.1007/s11033-014-3817-y25387436
  • Salgado-Montilla JL, Rodríguez-Cabán JL, Sánchez-García J, Sánchez-Ortiz R, Irizarry-Ramírez M. Impact of FTO SNPs rs9930506 and rs9939609 in prostate cancer severity in a cohort of puerto rican men. Arch Cancer Res. 2017;5.
  • Gholamalizadeh M, Jarrahi AM, Akbari ME, et al. Association between FTO gene polymorphisms and breast cancer: the role of estrogen. Expert Rev Endocrinol Metab. 2020;15:115–121. doi:10.1080/17446651.2020.173017632089015
  • Zeng X, Ban Z, Cao J, et al. Association of FTO mutations with risk and survival of breast cancer in a Chinese population. Dis Markers. 2015;2015:101032. doi:10.1155/2015/10103226146447
  • Kang Y, Liu F, Liu Y. Is FTOgene variant related to cancer risk independently of adiposity? An updated meta-analysis of 129,467 cases and 290,633 controls. Oncotarget. 2017;8(31):50987–50996. doi:10.18632/oncotarget.1644628881622
  • Chen J, Davuluri RV, Matei D, et al. Specific TaqMan allelic discrimination assay for rs1477196 and rs9939609 single nucleotide polymorphisms of FTO gene demonstrated that there is no association between these SNPs and risk of breast cancer in Iranian women. Cancer Res. 2015;4:136.
  • Tsugane S, Jafari Nedooshan J, Kargar S, et al. Lack of association of the fat mass and obesity associated (FTO) Gene rs9939609 polymorphism with breast cancer risk: a systematic review and meta-analysis based on case-control studies. PLoS One. 2017;18:1031–1037.
  • Kusinska R, Górniak P, Pastorczak A, et al. Influence of genomic variation in FTO at 16q12.2, MC4R at 18q22 and NRXN3 at 14q31 genes on breast cancer risk. Mol Biol Rep. 2012;39(3):2915–2919. doi:10.1007/s11033-011-1053-221688152
  • Zhu RM, Lin W, Zhang W, et al. Modification effects of genetic polymorphisms in FTO, IL-6, and HSPD1 on the associations of diabetes with breast cancer risk and survival. J Cancer Res Clin Oncol. 2017;12:e0178850.
  • Yang B, Thrift AP, Figueiredo JC, et al. Common variants in the obesity-associated genes FTO and MC4R are not associated with risk of colorectal cancer. Cancer Epidemiol. 2016;44:1–4. doi:10.1016/j.canep.2016.07.00327449576
  • Huang X, Zhao J, Yang M, Li M, Zheng J. Association between FTO gene polymorphism (rs9939609 T/A) and cancer risk: a meta-analysis. Eur J Cancer Care (Engl). 2017;26.
  • Li G, Chen Q, Wang L, Ke D, Yuan Z. Association between FTO gene polymorphism and cancer risk: evidence from 16,277 cases and 31,153 controls. Tumour Biol. 2012;33(4):1237–1243. doi:10.1007/s13277-012-0372-922396042
  • Lurie G, Gaudet MM, Spurdle AB, et al. The obesity-associated polymorphisms FTO rs9939609 and MC4R rs17782313 and endometrial cancer risk in non-Hispanic white women. PLoS One. 2011;6(2):e16756. doi:10.1371/journal.pone.001675621347432
  • Sigurdson AJ, Brenner AV, Roach JA, et al. Selected single-nucleotide polymorphisms in FOXE1, SERPINA5, FTO, EVPL, TICAM1 and SCARB1 are associated with papillary and follicular thyroid cancer risk: replication study in a German population. Carcinogenesis. 2016;37(7):677–684. doi:10.1093/carcin/bgw04727207655
  • Deng X, Su R, Stanford S, Chen J. Critical enzymatic functions of FTO in obesity and cancer. Front Endocrinol (Lausanne). 2018;9:396. doi:10.3389/fendo.2018.0039630105001
  • Tan A, Dang Y, Chen G, Mo Z. Overexpression of the fat mass and obesity associated gene (FTO) in breast cancer and its clinical implications. Int J Clin Exp Pathol. 2015;8:13405–13410.26722548
  • Singh B, Kinne HE, Milligan RD, Washburn LJ, Olsen M, Lucci A. Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS One. 2016;11(7):e0159072. doi:10.1371/journal.pone.015907227390851
  • Akbari ME, Gholamalizadeh M, Doaei S, Mirsafa F. FTO gene affects obesity and breast cancer through similar mechanisms: a new insight into the molecular therapeutic targets. Nutr Cancer. 2018;70(1):30–36. doi:10.1080/01635581.2018.139770929220587
  • Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. 2019;18:46.
  • Liu Y, Wang R, Zhang L, Li J, Lou K, Shi B. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol Lett. 2017;13:4685–4690.28599470
  • Bojagora A, Saridakis V. USP7 manipulation by viral proteins. Virus Res. 2020;286:198076. doi:10.1016/j.virusres.2020.19807632603670
  • Li P, Liu HM. Recent advances in the development of ubiquitin-specific-processing protease 7 (USP7) inhibitors. Eur J Med Chem. 2020;191:112107. doi:10.1016/j.ejmech.2020.11210732092586
  • Zhou J, Wang J, Chen C, Yuan H, Wen X, Sun H. USP7: target validation and drug discovery for cancer therapy. Med Chem. 2018;14:3–18.29065837
  • Liu J, Ren D, Du Z, Wang H, Zhang H, Jin Y. m 6 A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem Biophys Res Commun. 2018;502(4):456–464. doi:10.1016/j.bbrc.2018.05.17529842885
  • Tsai LH, Wu JY, Cheng YW, et al. The MZF1/c-MYC axis mediates lung adenocarcinoma progression caused by wild-type lkb1 loss. Oncogene. 2015;34:1641–1649.24793789
  • Qu Y, Dou P, Hu M, Xu J, Xia W, Sun H. circRNA‑CER mediates malignant progression of breast cancer through targeting the miR‑136/MMP13 axis. Mol Med Rep. 2019;19:3314–3320.30816475
  • Zhang H, Yang Q, Lian X, Jiang P, Cui J. Hypoxia-inducible Factor-1α (HIF-1α) promotes hypoxia-induced invasion and metastasis in ovarian cancer by targeting matrix metallopeptidase 13 (MMP13). Med Sci Monit. 2019;25:7202–7208. doi:10.12659/MSM.91688631587013
  • Zhang R, Zhu Z, Shen W, Li X, Dhoomun DK, Tian Y. Golgi Membrane Protein 1 (GOLM1) promotes growth and metastasis of breast cancer cells via regulating matrix metalloproteinase-13 (MMP13). Med Sci Monit. 2019;25:847–855. doi:10.12659/MSM.91166730695018
  • Li Y, Zheng D, Wang F, Xu Y, Yu H, Zhang H. Expression of demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric cancer. Mol Cancer. 2019;64:1503–1513.
  • Zahra K, Dey T, Ashish MSP, Pandey U. Pyruvate Kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol. 2020;10:159. doi:10.3389/fonc.2020.0015932195169
  • Zhang Z, Deng X, Liu Y, Liu Y. PKM2, function and expression and regulation. 2019;9:52.
  • Zhao Y, You S, Yu YQ, et al. Decreased nuclear expression of FTO in human primary hepatocellular carcinoma is associated with poor prognosis. Int J Clin Exp Pathol. 2019;12:3376–3383.31934180
  • Wen L, Pan X, Yu Y, Yang B. Down-regulation of FTO promotes proliferation and migration, and protects bladder cancer cells from cisplatin-induced cytotoxicity. BMC Urol. 2020;20:39. doi:10.1186/s12894-020-00612-732299393
  • Zhuang C, Zhuang C, Luo X, et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J Cell Mol Med. 2019;23:2163–2173. doi:10.1111/jcmm.1412830648791
  • Panajatovic M, Singh F, Duthaler U, Krähenbühl S, Bouitbir J. Role of PGC-1-alpha-associated mitochondrial biogenesis in statin-induced myotoxicity. Eur Cardiol. 2020;15:e35. doi:10.15420/ecr.2020.15.1.PO1232612695
  • Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1 α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2018;293:4953. doi:10.1074/jbc.EC118.00268229602880
  • Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G. PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion. 2012;12:86–99. doi:10.1016/j.mito.2011.09.00921983689
  • Zhang S, Liu X, Liu J, Guo H, Xu H, Zhang G. PGC-1 alpha interacts with microRNA-217 to functionally regulate breast cancer cell proliferation. Biomed Pharmacother. 2017;85:541–548. doi:10.1016/j.biopha.2016.11.06227916422
  • Zou D, Dong L, Li C, Yin Z, Rao S, Zhou Q. The m(6)A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell Int. 2019;19:321. doi:10.1186/s12935-019-1045-131827395
  • Tian W, Teng F, Gao J, et al. Estrogen and insulin synergistically promote endometrial cancer progression via crosstalk between their receptor signaling pathways. Horm Cancer. 2019;16:55–70.
  • Yang B, Chen R, Liang X, et al. Estrogen enhances endometrial cancer cells proliferation by upregulation of prohibitin. J Cancer. 2019;10:1616–1621. doi:10.7150/jca.2821831205517
  • Rodriguez AC, Blanchard Z, Maurer KA, Gertz J. Estrogen signaling in endometrial cancer: a key oncogenic pathway with several open questions. 2019;10:51–63.
  • Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene. 2019;698:120–128. doi:10.1016/j.gene.2019.02.07630849534
  • Roncolato F, Lindemann K, Willson ML, Martyn J, Mileshkin L. PI3K/AKT/mTOR inhibitors for advanced or recurrent endometrial cancer. Cochrane Database Syst Rev. 2019;10:Cd012160.31588998
  • Wanigasooriya K, Tyler R, Barros-Silva JD, Sinha Y, Ismail T, Beggs AD. Radiosensitising cancer using Phosphatidylinositol-3-Kinase (PI3K), Protein Kinase B (AKT) or mammalian target of rapamycin (mTOR) Inhibitors. Cancers (Basel). 2020;12.
  • Braicu C, Buse M, Busuioc C, et al. A comprehensive review on MAPK: a promising therapeutic target in cancer. Int J Mol Sci. 2019;11.
  • Dreas A, Mikulski M, Milik M, Fabritius CH, Brzózka K, Rzymski T. Mitogen-activated Protein Kinase (MAPK) interacting Kinases 1 and 2 (MNK1 and MNK2) as targets for cancer therapy: recent progress in the development of MNK inhibitors. Cancers (Basel). 2017;24:3025–3053.
  • Lee S, Rauch J. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. 2020;21.
  • Stramucci L, Pranteda A, Bossi G. Insights of Crosstalk Between P53 Protein and the MKK3/MKK6/P38 MAPK Signaling Pathway in Cancer. 2018:10.
  • Zhu Y, Shen J, Gao L, Feng Y. Estrogen promotes fat mass and obesity-associated protein nuclear localization and enhances endometrial cancer cell proliferation via the mTOR signaling pathway. Oncol Rep. 2016;35:2391–2397. doi:10.3892/or.2016.461326884084
  • Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, et al. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: implication for cancer therapy. Cell Biosci. 2020;255:117481.
  • Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. 2020;10:31.
  • Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-Methyladenosine RNA Demethylase. Cancer Cell. 2017;31:127–141. doi:10.1016/j.ccell.2016.11.01728017614
  • Glasow A, Prodromou N, Xu K, von Lindern M, Zelent A. Retinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways. Blood. 2005;105:341–349. doi:10.1182/blood-2004-03-107415339853
  • Guibal FC, Moog-Lutz C, Smolewski P, et al. ASB-2 inhibits growth and promotes commitment in myeloid leukemia cells. J Biol Chem. 2002;277:218–224. doi:10.1074/jbc.M10847620011682484
  • Kohroki J, Fujita S, Itoh N, et al. ATRA-regulated Asb-2 gene induced in differentiation of HL-60 leukemia cells. FEBS Lett. 2001;505:223–228. doi:10.1016/S0014-5793(01)02829-011566180
  • Sakamoto K, Imamura T, Yano M, et al. Sensitivity of MLL-rearranged AML cells to all-trans retinoic acid is associated with the level of H3K4me2 in the RARα promoter region. Blood Cancer J. 2014;4:e205. doi:10.1038/bcj.2014.2524769646
  • Wang J, Muntean AG, Hess JL. ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood. 2012;119:1151–1161. doi:10.1182/blood-2011-06-36207922174154
  • Su R, Dong L, Li C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell. 2018;172:90–105.e23. doi:10.1016/j.cell.2017.11.03129249359
  • D’Altri T, Wilhelmson AS, Schuster MB. et al. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia. Haematologica;2020 haematol.2019.235150. doi:10.3324/haematol.2019.235150
  • Maxson JE, Schmidt L, Heyes E, Scheiblecker L, Eder T. CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex. Nat Commun. 2019;33:1608–1619.
  • Braun TP, Okhovat M, Coblentz C, Carratt SA. Myeloid lineage enhancers drive oncogene synergy in CEBPA/CSF3R mutant acute myeloid leukemia. 2019;10:5455.
  • Van Der Werf I, Jamieson C. The Yin and Yang of RNA methylation: an imbalance of erasers enhances sensitivity to FTO demethylase small-molecule targeting in leukemia stem cells. Cancer Cell. 2019;35:540–541. doi:10.1016/j.ccell.2019.03.01130991023
  • Wen L, Yu Y, Lv H, He Y, Yang B. FTO mRNA expression in the lower quartile is associated with bad prognosis in clear cell renal cell carcinoma based on TCGA data mining. Ann Diagn Pathol. 2019;38:1–5. doi:10.1016/j.anndiagpath.2018.10.00930380400
  • Strick A, von Hagen F, Gundert L, et al. The N(6)-methyladenosine (m(6) A) erasers alkylation repair homologue 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma. 2020;125:617–24