80
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Near-Infrared Light-Triggered Thermosensitive Liposomes Modified with Membrane Peptides for the Local Chemo/Photothermal Therapy of Melanoma

, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 1317-1329 | Published online: 25 Feb 2021

References

  • Damsky WE, Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene. 2017;36(42):5771–5792.
  • Olbryt M. Molecular background of skin melanoma development and progression: therapeutic implications. Postepy Dermatol Alergol. 2019;36(2):129–138. doi:10.5114/ada.2019.84590
  • Rastrelli M, Tropea S, Rossi CR, et al. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. 2014;28(6):1005–1011.
  • Tripp MK, Watson M, Balk SJ, et al. State of the science on prevention and screening to reduce melanoma incidence and mortality: the time is now. CA Cancer J Clin. 2016;66(6):460–480. doi:10.3322/caac.21352
  • Yetisgin A, Cetinel S, Zuvin M, et al. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules. 2020;25(9):2193. doi:10.3390/molecules25092193
  • Chou Y-P, Lin Y-K, Chen C-H, et al. Recent advances in polymeric nanosystems for treating cutaneous melanoma and its metastasis. Curr Pharm Des. 2018;23(35). doi:10.2174/1381612823666170710121348.
  • Zhu Y, Jia H, Duan Q, et al. Photosensitizer-doped and plasma membrane-responsive liposomes for nuclear drug delivery and multidrug resistance reversal. ACS Appl Mater Interfaces. 2020;12(33):36882–36894. doi:10.1021/acsami.0c09110
  • Xiong H, Wu Y, Jiang Z, et al. pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release. J Colloid Interface Sci. 2020;565:623. doi:10.1016/j.jcis.2019.12.121
  • Li Y, Xiao BX, Dong J, et al. Near-infrared light-responsive nanoparticles for improved anticancer efficacy through synergistic chemo-photothermal therapy. Pharm Dev Technol. 2017;23(1):1–9. doi:10.1080/10837450.2017.1312441
  • Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4(3):259–271. doi:10.1038/s41551-019-0494-0
  • Bhavane R, Starosolski Z, Stupin I, et al. NIR-II fluorescence imaging using indocyanine green nanoparticles. Sci Rep. 2018;8(1):14455. doi:10.1038/s41598-018-32754-y
  • Wu B, Wan B, Lu S-T, et al. Near-infrared light-triggered theranostics for tumor-specific enhanced multimodal imaging and photothermal therapy. Int J Nanomedicine. 2017;12:4467–4478. doi:10.2147/IJN.S137835
  • Zhang L, Qin Y, Zhang Z, et al. Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomater. 2018;75:371–385. doi:10.1016/j.actbio.2018.05.026
  • Li X, Xing L, Hu Y, et al. An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy. Acta Biomater. 2017;62:273–283. doi:10.1016/j.actbio.2017.08.024
  • Chen Q, Liang C, Wang C, et al. An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv Mater Weinheim. 2015;27(5):903–910. doi:10.1002/adma.201404308
  • Zhang R, Cheng K, Antaris AL, et al. Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials. 2016;103:265–277. doi:10.1016/j.biomaterials.2016.06.063
  • Abri Aghdam M, Bagheri R, Mosafer J, et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release. 2019;315:1–22.
  • De Matos MBC, Beztsinna N, Heyder C, et al. Thermosensitive liposomes for triggered release of cytotoxic proteins. Eur J Pharm Biopharm. 2018;132:211–221. doi:10.1016/j.ejpb.2018.09.010
  • Jin Y, Liang X, An Y, et al. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyperthermia and chemotherapy of cancer. Bioconjug Chem. 2016;27(12):2931–2942. doi:10.1021/acs.bioconjchem.6b00603
  • Huang X, Li M, Bruni R, et al. The effect of thermosensitive liposomal formulations on loading and release of high molecular weight biomolecules. Int J Pharm. 2017;524(1–2):279–289. doi:10.1016/j.ijpharm.2017.03.090
  • Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: achievements and challenges. Int J Pharm. 2017;523(1):15–32. doi:10.1016/j.ijpharm.2017.03.019
  • Turner DC, Moshkelani D, Shemesh CS, et al. Near-infrared image-guided delivery and controlled release using optimized thermosensitive liposomes. Pharm Res. 2012;29(8):2092–2103. doi:10.1007/s11095-012-0738-0
  • Wang Y, Wang S, Shi P. Transcriptional transactivator peptide modified lidocaine-loaded nanoparticulate drug delivery system for topical anesthetic therapy. Drug Deliv. 2016;23(9):3193–3199. doi:10.3109/10717544.2016.1160459
  • Zhu Y, Cheng L, Cheng L, et al. Folate and TAT peptide co-modified liposomes exhibit receptor-dependent highly efficient intracellular transport of payload in vitro and in vivo. Pharm Res. 2014;31(12):3289–3303. doi:10.1007/s11095-014-1418-z
  • Hou X, Pang Y, Li X, et al. Core‑shell type thermo‑nanoparticles loaded with temozolomide combined with photothermal therapy in melanoma cells. Oncol Rep. 2019. doi:10.3892/or.2019.7329
  • Jiang G, Li R, Sun C, et al. Efficacy and safety between temozolomide alone and temozolomide-based double therapy for malignant melanoma: a meta-analysis. Tumor Biol. 2013;35(1):315–322. doi:10.1007/s13277-013-1042-2
  • Bepler G, Begum M, Simon G. Molecular analysis-based treatment strategies for non–small cell lung cancer. Cancer Control. 2008;15(2):130–139. doi:10.1177/107327480801500205
  • Fu G, Sanjay S, Dou M, et al. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer. Nanoscale. 2016;8(10):5422–5427. doi:10.1039/C5NR09051B
  • Gorgizadeh M, Azarpira N, Dehdari Veis R, et al. Repression of melanoma tumor in vitro and in vivo by photothermal effect of carbon xerogel nanoparticles. Colloids Surf B Biointerfaces. 2019;176:449–455. doi:10.1016/j.colsurfb.2019.01.032