64
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Preparation, Biocompatibility and Antitumor Activity of Nanodelivery System Targeting Breast Cancer Base on a Silica Nanoparticle

, , ORCID Icon, , , & show all
Pages 3429-3442 | Published online: 25 May 2021

References

  • DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–451. doi:10.3322/caac.21583
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi:10.3322/caac.21590
  • He Z, Zhang X, Zhang H, et al. Nano-delivery vehicle based on chlorin e6, photodynamic therapy, doxorubicin chemotherapy provides targeted treatment of HER-2, negative, ανβ3-positive Breast Cancer. Pharmacol Res. 2020;160:105184. doi:10.1016/j.phrs.2020.105184
  • Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–385. doi:10.3322/caac.21565
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi:10.3322/caac.21551
  • Yang Y, Tian Z, Guo R, Ren F. Nrf 2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways. Oxid Med Cell Longev. 2020;9867595. doi:10.1155/2020/9867595
  • Hung YC, Wang PW, Lin TY, Yang PM, You JS, Pan TL. Functional Redox Proteomics Reveal That Salvia miltiorrhiza Aqueous Extract Alleviates Adriamycin-Induced Cardiomyopathy via Inhibiting ROS-Dependent Apoptosis. Oxid Med Cell Longev. 2020;2020:5136934. doi:10.1155/2020/5136934
  • Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Progress in natural compounds/siRNA co-delivery employing nanovehicles for cancer therapy. ACS Comb Sci. 2020;22(12):669–700. doi:10.1021/acscombsci.0c00099
  • Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Nano-soldiers ameliorate silibinin delivery: a Review Study. Curr Drug Deliv. 2020;17(1):15–22. doi:10.2174/1567201816666191112113031
  • Zhang X, He Z, Xiang L, et al. Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Des Dev Ther. 2019;13:1357–1372. doi:10.2147/dddt.S198400
  • Norouzi M. Gold nanoparticles in glioma theranostics. Pharmacol Res. 2020;156:104753. doi:10.1016/j.phrs.2020.104753
  • Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, et al. Progress in delivery of siRNA-based therapeutics employing nano-vehicles for treatment of prostate cancer. Bioengineering (Basel). 2020;7(3). doi:10.3390/bioengineering7030091
  • Pinheiro WO, Fascineli ML, Ramos KLV, et al. Synergistic antitumor efficacy of magnetohyperthermia and poly(lactic-co-glycolic acid)-encapsulated selol in ehrlich breast adenocarcinoma treatment in elderly swiss mice. J Biomed Nanotechnol. 2020;16(2):179–192. doi:10.1166/jbn.2020.2890
  • Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release. 2020;325:249–275. doi:10.1016/j.jconrel.2020.06.038
  • Liu J, Guo N, Gao C, et al. Effective gene silencing mediated by polypeptide nanoparticles LAH4-L1-siMDR1 in multi-drug resistant human breast cancer. J Biomed Nanotechnol. 2019;15(3):531–543. doi:10.1166/jbn.2019.2705
  • Faisal S, Shah SA, Shah S, et al. In vitro biomedical and photo-catalytic application of bio-inspired zingiber officinale mediated silver nanoparticles. J Biomed Nanotechnol. 2020;16(4):492–504. doi:10.1166/jbn.2020.2918
  • Mosiniewicz-Szablewska E, Tedesco AC, Suchocki P, Morais PC. Magnetic studies of polylactic-co-glicolic acid nanocapsules loaded with selol and γ-Fe(2)O(3) nanoparticles. Phys Chem Chem Phys. 2020;22(37):21042–21058. doi:10.1039/d0cp02706e
  • Madzharova F, Heiner Z, Kneipp J. Surface-enhanced hyper raman spectra of aromatic thiols on gold and silver nanoparticles. J Phys Chem C Nanomater Interfaces. 2020;124(11):6233–6241. doi:10.1021/acs.jpcc.0c00294
  • Boakye-Ansah S, Khan MA, Haase MF. Controlling surfactant adsorption on highly charged nanoparticles to stabilize bijels. J Phys Chem C Nanomater Interfaces. 2020;124(23):12417–12423. doi:10.1021/acs.jpcc.0c01440
  • Chen Z, Zhang Q, Zeng L, et al. Light-triggered OVA release based on CuS@poly(lactide-co-glycolide acid) nanoparticles for synergistic photothermal-immunotherapy of tumor. Pharmacol Res. 2020;158:104902. doi:10.1016/j.phrs.2020.104902
  • Huang JH, Sun DD, Lu RX, Zhang H, Khan RAA. Simulation on diffusivity and statistical size of polymer chains in polymer nanocomposites. Phys Chem Chem Phys. 2020;22(38):21919–21927. doi:10.1039/d0cp04390g
  • Jiménez-López J, El-Hammadi MM, Ortiz R, et al. A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacol Res. 2019;141:451–465. doi:10.1016/j.phrs.2019.01.013
  • He Z, Wang Q, Sun Y, et al. The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility. J Biomater Sci Polym Ed. 2014;25(9):943–964. doi:10.1080/09205063.2014.914705
  • He Z, Shi Z, Sun W, et al. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumour Biol. 2016;37(6):7809–7821. doi:10.1007/s13277-015-4634-1
  • Yuan P, Hu X, Zhou Q. The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology. 2020;1–19. doi:10.1080/17435390.2020.1817598
  • Jamir K, Ganguly R, Seshagirirao K. ZCPG, a cysteine protease from Zingiber montanum rhizome exhibits enhanced anti-inflammatory and acetylcholinesterase inhibition potential. Int J Biol Macromol. 2020;163:2429–2438. doi:10.1016/j.ijbiomac.2020.09.097
  • He Z, Sun Y, Wang Q, et al. Degradation and bio-safety evaluation of mPEG-PLGA-PLL copolymer-prepared nanoparticles. J Phys Chem C. 2015;119(6):150203133733009. doi:10.1021/jp510183s
  • Moskvin M, Marková I, Malínská H, et al. Cerium oxide-decorated γ-Fe(2)O(3) nanoparticles: design, synthesis and in vivo effects on parameters of oxidative stress. Front Chem. 2020;8:682. doi:10.3389/fchem.2020.00682
  • Cefali LC, Ataide JA, Fernandes AR, et al. Flavonoid-enriched plant-extract-loaded emulsion: a novel phytocosmetic sunscreen formulation with antioxidant properties. Antioxidants (Basel). 2019;8(10):443. doi:10.3390/antiox8100443
  • Gupta S, Wairkar S, Bhatt LK. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. J Microencapsul. 2020;1–9. doi:10.1080/02652048.2020.1823499
  • Song S, Jin X, Zhang L, et al. PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses. Int J Nanomedicine. 2019;14:2465–2483. doi:10.2147/ijn.S195828
  • Busipalli DL, Lin KY, Nachimuthu S, Jiang JC. Enhanced moisture stability of cesium lead iodide perovskite solar cells – a first-principles molecular dynamics study. Phys Chem Chem Phys. 2020;22(10):5693–5701. doi:10.1039/C9CP06341B
  • Su G, Sun G, Liu H, Shu L, Zhang W, Liang Z. Prokineticin 2 relieves hypoxia/reoxygenation-induced injury through activation of Akt/mTOR pathway in H9c2 cardiomyocytes. Artif Cells, Nanomed Biotechnol. 2020;48(1):345–352. doi:10.1080/21691401.2019.1709850
  • Liao S, Zhang Y, Pan X, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine. 2019;14:1469–1487. doi:10.2147/ijn.S191340
  • Buhl ASK, Christensen TD, Christensen IJ, et al. Predicting efficacy of epirubicin by a multigene assay in advanced breast cancer within a Danish Breast Cancer Cooperative Group (DBCG) cohort: a retrospective-prospective blinded study. Breast Cancer Res Treat. 2018;172(2):391–400. doi:10.1007/s10549-018-4918-4