183
Views
18
CrossRef citations to date
0
Altmetric
Review

Dihydroartemisinin as a Sensitizing Agent in Cancer Therapies

ORCID Icon, , , , , & ORCID Icon show all
Pages 2563-2573 | Published online: 13 Apr 2021

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Guo Z. Development of artemisinin antimalarials. Acta Pharm Sin. 2016;51(1):157–164. doi:10.16438/j.0513-4870.2015-1036
  • Li G, Zhou Q, Zhao C, Qu F, Huang L. Current research status of artemisinins. Clin Pharm J. 1998;33(7):3–5. doi:10.3321/j.issn:1001-2494
  • Xu CC, Deng T, Fan MC, Lv WB, Liu JH, Yu BY. Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives. Eur J Med Chem. 2016;107:192–203. doi:10.1016/j.ejmech.2015.11.003
  • Li BN, Bu SX, Sun JY, Guo Y, Lai DM. Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest. Acta Biochim Biophys Sin. 2018;50(12):1227–1235. doi:10.1093/abbs/gmy125
  • Xu CH, Liu Y, Xiao LM, et al. Dihydroartemisinin treatment exhibits antitumor effects in glioma cells through induction of apoptosis. Mol Med Rep. 2017;16(6):9528–9532. doi:10.3892/mmr.2017.7832
  • Dong FY, Zhou X, Li CS, et al. Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis. Cancer Biol Ther. 2014;15(11):1479–1488. doi:10.4161/15384047.2014.955728
  • Jiang J, Geng GJ, Yu XY, et al. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis. Oncotarget. 2016;7(52):87271–87283. doi:10.18632/oncotarget.13536
  • Friedman HS, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin Cancer Res. 2000;6(7):2585–2597.
  • Chen X, Lai M, Tang P, Lai H. Study the influence mechanism of luteolin combined with temozolomide on glioma. Pharm Clin Chin Materia Medica. 2017;33(2):63–66.
  • Choi EJ, Cho BJ, Lee DJ, et al. Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases. BMC Cancer. 2014;14:17. doi:10.1186/1471-2407-14-17
  • Zhang WB, Wang Z, Shu F, et al. Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem. 2010;285(52):40461–40471. doi:10.1074/jbc.M110.164046
  • Jiapaer S, Furuta T, Tanaka S, Kitabayashi T, Nakada M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol Med Chir. 2018;58(10):405–421. doi:10.2176/nmc.ra.2018-0141
  • Yan J, Wen J, Chen H, Huang Q, Li X, Mo L. The research on dihydroartemisinin combined with temozolomide inhibits the proliferation and induces apoptosis of glioma cells. Chin J Exp Surg. 2019;36(2):274–276. doi:10.3760/cma.j.issn.1001-9030.2019.02.025
  • Zhang ZS, Wang J, Shen YB, et al. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy. Oncol Lett. 2015;10(1):379–383. doi:10.3892/ol.2015.3183
  • Huang XJ, Li CT, Zhang WP, Lu YB, Fang SH, Wei EQ. Dihydroartemisinin potentiates the cytotoxic effect of temozolomide in rat C6 glioma cells. Pharmacology. 2008;82(1):1–9. doi:10.1159/000125673
  • Lemke D, Pledl HW, Zorn M, et al. Slowing down glioblastoma progression in mice by running or the anti-malarial drug dihydroartemisinin? Induction of oxidative stress in murine glioblastoma therapy. Oncotarget. 2016;7(35):56713–56725. doi:10.18632/oncotarget.10723
  • Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S. Analysis of anticancer drugs: a review. Talanta. 2011;85(5):2265–2289. doi:10.1016/j.talanta.2011.08.034
  • Liu C, Liu G. Progress in gemcitabine resistance mechanism of pancreatic cancer cells. People’s Military Surgeon. 2019;62(12):1211–1216.
  • Nakano T, Saiki Y, Kudo C, et al. Acquisition of chemoresistance to gemcitabine is induced by a loss-of-function missense mutation of DCK. Biochem Biophys Res Commun. 2015;464(4):1084–1089. doi:10.1016/j.bbrc.2015.07.080
  • Yang SC, Zhang DW, Shen N, Wang GY, Tang ZH, Chen XS. Dihydroartemisinin increases gemcitabine therapeutic efficacy in ovarian cancer by inducing reactive oxygen species. J Cell Biochem. 2019;120(1):634–644. doi:10.1002/jcb.27421
  • Zhao CB, Gao WJ, Chen TS. Synergistic induction of apoptosis in A549 cells by dihydroartemisinin and gemcitabine. Apoptosis. 2014;19(4):668–681. doi:10.1007/s10495-013-0953-0
  • Zhao CB, Qin GQ, Gao WJ, et al. Potent proapoptotic actions of dihydroartemisinin in gemcitabine-resistant A549 cells. Cell Signal. 2014;26(10):2223–2233. doi:10.1016/j.cellsig.2014.07.001
  • Wang SJ, Gao Y, Chen H, et al. Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett. 2010;293(1):99–108. doi:10.1016/j.canlet.2010.01.001
  • Wang S, Sun B, Pan S, et al. Experimental study of the function and mechanism combining dihydroartemisinin and gemcitabine in treating pancreatic cancer. Chin J Surg. 2010;48(7):530–534. doi:10.3760/cma.j.issn.0529-5815.2010.07.013
  • Shao Z, Xiang S, Zhu J, Zou J. Experimental study of dihydroartemisinin combined with gemcitabine in the treatment of cholangiocarcinoma. Shenzhen J Integr Tradit Chin West Med. 2016;26(22):4–6. doi:10.16458/j.cnki.1007-0893.2016.22.002
  • Baba H, Teramoto K, Kawamura T, Mori A, Imamura M, Arii S. Dihydropyrimidine dehydrogenase and thymidylate synthase activities in hepatocellular carcinomas and in diseased livers. Cancer Chemother Pharmacol. 2003;52(6):469–476. doi:10.1007/s00280-003-0695-8
  • Dai ZR, Mao QF. Dihydroartemisinin increases sensitivity of gastric cancer cells to 5 -fluorouracil through suppression of ATF2 phosphorylation. Zhejiang JITCW M. 2018;28(5):363–365, 369.
  • Wan B, Cao HB, Yu GH. Dihydroartemisinin enhances antitumor effect of 5-fluorouracil against gastric cancer by down-regulating SIRT1 expression. Chin J Pathophysiol. 2017;33(12):2195–2201.
  • Yao ZH, Bhandari A, Wang YH, et al. Dihydroartemisinin potentiates antitumor activity of 5-fluorouracil against a resistant colorectal cancer cell line. Biochem Biophys Res Commun. 2018;501(3):636–642. doi:10.1016/j.bbrc.2018.05.026
  • Yang Y, He JX, Chen J, et al. Dihydroartemisinin sensitizes mutant p53 (r248q)-expressing hepatocellular carcinoma cells to doxorubicin by inhibiting p-gp expression. Biomed Res Int. 2019;2019:8207056. doi:10.1155/2019/8207056
  • Kang XJ, Wang HY, Peng HG, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin. 2017;38(6):885–896. doi:10.1038/aps.2017.10
  • Hu YJ, Zhang JY, Luo Q, et al. Nanostructured dihydroartemisinin plus epirubicin liposomes enhance treatment efficacy of breast cancer by inducing autophagy and apoptosis. Nanomaterials. 2018;8(10):804. doi:10.3390/nano8100804
  • Tai X, Cai XB, Zhang Z, Wei R. In vitro inhibition of tumor cell viability by combined dihydroartemisinin and doxorubicin treatment, and the underlying mechanism. Oncol Lett. 2016;12(5):3701–3706. doi:10.3892/ol.2016.5187
  • Liu JJ, Tang W, Fu M, et al. Development of R8 modified epirubicin–dihydroartemisinin liposomes for treatment of non-small-cell lung cancer. Artif Cells Nanomed Biotechnol. 2019;47(1):1947–1960. doi:10.1080/21691401.2019.1615932
  • Wong PM, Feng Y, Wang JR, Shi R, Jiang XJ. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun. 2015;6:8048. doi:10.1038/ncomms9048
  • Wang LM, Wang RL. Effect of rapamycin (RAPA) on the growth of lung cancer and its mechanism in mice with A549. Int J Clin Exp Pathol. 2015;8(8):9208–9213.
  • Chen K, Lv S. Resistant mechanism about rapamycin and solution. J Int Oncol. 2014;41(10):740–743. doi:10.3760/cma.j.issn.1673-422X.2014.10.007
  • Zhong X, Wang A, Wang H, Feng J, Zheng B, Shi H. DHA-inhibited proliferation through the PTEN/PI3K/Akt pathway in gastric cancer SGC7901 cells. Chin J Clin Oncol. 2013;4:190–194. doi:10.3969/j.issn.1000-8179.2013.04.003
  • Thongchot S, Vidoni C, Ferraresi A, et al. Dihydroartemisinin induces apoptosis and autophagy-dependent cell death in cholangiocarcinoma through a DAPK1-BECLIN1 pathway. Mol Carcinog. 2018;57(12):1735–1750. doi:10.1002/mc.22893
  • Liu QJ, Zhou XY, Li C, Zhang XM, Li CL. Rapamycin promotes the anticancer action of dihydroartemisinin in breast cancer MDA-MB-231 cells by regulating expression of Atg7 and DAPK. Oncol Lett. 2018;15(4):5781–5786. doi:10.3892/ol.2018.8013
  • Chen LP, Wang L, Shen HB, Lin H, Li D. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition. Biochem Biophys Res Commun. 2017;484(2):416–421. doi:10.1016/j.bbrc.2017.01.140
  • Huang D, Li L, Na X. Inhibitory effect of dihydroartemisinin combined with paclitaxel on proliferation of breast cancer cells. J Front Med. 2018;8(14):160. doi:10.3969/j.issn.2095-1752.2018.14.125
  • Paccez J, Duncan K, Sekar D, et al. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis. 2019;8(3):14. doi:10.1038/s41389-019-0122-6
  • Dai Phung C, Le TG, Nguyen VH, et al. PEGylated-paclitaxel and dihydroartemisinin nanoparticles for simultaneously delivering paclitaxel and dihydroartemisinin to colorectal cancer. Pharm Res. 2020;37(7):129. doi:10.1007/s11095-020-02819-7
  • Guan F, Ding YM, Zhang YM, Zhou Y, Li MG, Wang CH. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One. 2016;11(1):e0146553. doi:10.1371/journal.pone.0146553
  • Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi MM. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer. Int J Biol Macromol. 2016;93(Pt.A):242–253. doi:10.1016/j.ijbiomac.2016.08.050
  • Gabriel S, Felipe TL, Viviane S, et al. Curcumin analog CH-5 suppresses the proliferation, migration, and invasion of the human gastric cancer cell line HGC-27. Molecules. 2018;23(2):279. doi:10.3390/molecules23020279
  • Gaikwad D, Shewale R, Patil V, Mali D, Gaikwad U, Jadhav N. Enhancement in in vitro anti-angiogenesis activity and cytotoxicity in lung cancer cell by pectin-PVP based curcumin particulates. Int J Biol Macromol. 2017;104(Pt.A):656–664. doi:10.1016/j.ijbiomac.2017.05.170
  • Starok M, Preira P, Vayssade M, Haupt K, Salomé L, Rossi C. EGFR inhibition by curcumin in cancer cells: a dual mode of action. Biomacromolecules. 2015;16(5):1634–1642. doi:10.1021/acs.biomac.5b00229
  • Zhao JJ, Pan YC, Li XJ, et al. Dihydroartemisinin and curcumin synergistically induce apoptosis in SKOV3 cells via upregulation of MiR-124 targeting midkine. Cell Physiol Biochem. 2017;43(2):589–601. doi:10.1159/000480531
  • Ohmichi M, Hayakawa J, Tasaka K, Kurachi H, Murata Y. Mechanisms of platinum drug resistance. Trends Pharmacol Sci. 2005;26(3):113–116. doi:10.1016/j.tips.2005.01.002
  • Delbridge AR, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer. 2016;16(2):99–109. doi:10.1038/nrc.2015.17
  • Zhang SY, Feng R, Yuan F, et al. The therapeutic effects of dihydroartemisinin on cisplatin-resistant gastric cancer cells. Curr Pharm Biotechnol. 2021;22. doi:10.2174/1389201022666210217114825
  • Feng X, Li L, Jiang H, Jiang KP, Jin Y, Zheng JH. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy. Biochem Biophys Res Commun. 2014;444(3):376–381. doi:10.1016/j.bbrc.2014.01.053
  • Cui W, Fang TT, Duan ZH, et al. Dihydroartemisinin sensitizes esophageal squamous cell carcinoma to cisplatin by inhibiting sonic hedgehog signaling. Front Cell Dev Biol. 2020;8:596788. doi:10.3389/fcell.2020.596788
  • Qin Y, Yang G, Li M, et al. Dihydroartemisinin inhibits EMT induced by platinum-based drugs via Akt-Snail pathway. Oncotarget. 2017;8(61):103815–103827. doi:10.18632/oncotarget.21793
  • Zhang BC, Zhang ZM, Wang J, et al. Dihydroartemisinin sensitizes Lewis lung carcinoma cells to carboplatin therapy via p38 mitogen-activated protein kinase activation. Oncol Lett. 2018;15(5):7531–7536. doi:10.3892/ol.2018.8276
  • Feng M, Ding J, Liu S, Tian J, Sun BWL, Guan WX. The effect of gender on endoplasmic reticulum-stress (ER-stress) and apoptosis signals in patients with hepatocellular carcinoma. J Jiangsu Univ. 2017;27(05):432–436.
  • Ezzoukhry Z, Louandre C, Trécherel E, et al. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer. 2012;131(12):2961–2969. doi:10.1002/ijc.27604
  • Zhang Z, Zhou XY, Shen HJ, Wang DX, Wang YH. Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC Med. 2009;7:41. doi:10.1186/1741-7015-7-41
  • Shimizu S, Takehara T, Hikita H, et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 2012;131(3):548–557. doi:10.1002/ijc.26374
  • Hou CY, Guo DQ, Yu X, Wang SY, Liu TH. TMT-based proteomics analysis of the anti-hepatocellular carcinoma effect of combined dihydroartemisinin and sorafenib. Biomed Pharmacother. 2020;126:109862. doi:10.1016/j.biopha.2020.109862
  • Wang ZF, Duan XX, Lv YH, Zhao YF. Low density lipoprotein receptor (LDLR)-targeted lipid nanoparticles for the delivery of sorafenib and Dihydroartemisinin in liver cancers. Life Sci. 2019;239:117013. doi:10.1016/j.lfs.2019.117013
  • Kiyota M, Kuroda J, Yamamoto-Sugitani M, et al. FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors. Apoptosis. 2013;18(11):1437–1446. doi:10.1007/s10495-013-0882-y
  • Ng KP, Hillmer AM, Chuah CT, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18(4):521–528. doi:10.1038/nm.2713
  • Deng QF, Fang QY, Ji XX, Zhou SW. Cyclooxygenase-2 mediates gefitinib resistance in non-small cell lung cancer through the EGFR/PI3K/AKT axis. J Cancer. 2020;11(12):3667–3674. doi:10.7150/jca.42850
  • Jin H, Jiang AY, Wang H, Cao Y, Wu Y, Jiang XF. Dihydroartemisinin and gefitinib synergistically inhibit NSCLC cell growth and promote apoptosis via the Akt/mTOR/STAT3 pathway. Mol Med Rep. 2017;16(3):3475–3481. doi:10.3892/mmr.2017.6989
  • Song F, Luo M, Fan N, Zhou J, Li Y. Combination of dihydroartemisinin and gefitinib inhibits cell cycle and migration of lung adenocarcinoma cells in vitro. Armed Police Med. 2019;30(03):228–232.
  • Bellini L, Strub T, Habel N, et al. Endoplasmic reticulum stress mediates resistance to BCL-2 inhibitor in uveal melanoma cells. Cell Death Discov. 2020;6:22. doi:10.1038/s41420-020-0259-2
  • Inoue-Yamauchi A, Oda H. EMT-inducing transcription factor ZEB1-associated resistance to the BCL-2/BCL-X L inhibitor is overcome by BIM upregulation in ovarian clear cell carcinoma cells. Biochem Biophys Res Commun. 2020;526(3):612–617. doi:10.1016/j.bbrc.2020.03.139
  • Yan XH, Li PF, Zhan YH, et al. Dihydroartemisinin suppresses STAT3 signaling and Mcl-1 and Survivin expression to potentiate ABT-263-induced apoptosis in non-small cell lung cancer cells harboring EGFR or RAS mutation. Biochem Pharmacol. 2018;150:72–85. doi:10.1016/j.bcp.2018.01.031
  • Budhraja A, Turnis ME, Churchman ML, et al. Modulation of navitoclax sensitivity by dihydroartemisinin-mediated MCL-1 repression in BCR-ABL+ B-lineage acute lymphoblastic leukemia. Clin Cancer Res. 2017;23(24):7558–7568. doi:10.1158/1078-0432.CCR-17-1231
  • Kempf H, Hatzikirou H, Bleicher M, Meyer-Hermann M. In silico analysis of cell cycle synchronisation effects in radiotherapy of tumour spheroids. PLoS Comput Biol. 2013;9(11):e1003295. doi:10.1371/journal.pcbi.1003295.
  • Zuo Z, Wang J, Wang S, Xin Y, Zhang H. The sensitizing effects of combined treatment with dihydroartemisinin and irradiation on human lung cancer in nude mice. J Modern Oncol. 2013;21(12):2687–2691. doi:10.3969/j.issn.1672-4992.2013.12.13
  • Zuo Z, Wang S, Jiang L, Xin Y, Li W. Effect of dihydroartemisinin combined irradiation on the apoptosis of human lung cancer GLC-82 cells and its mechanism study. Chin J Integr Tradt Chin West Med. 2014;34(10):1220–1224.
  • Zhang H, Zhou F, Wang YY, et al. Eliminating radiation resistance of non-small cell lung cancer by dihydroartemisinin through abrogating immunity escaping and promoting radiation sensitivity by inhibiting PD-L1 expression. Front Oncol. 2020;10:595466. doi:10.3389/fonc.2020.595466