156
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Urolithin A Inhibits Epithelial–Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail Pathway

, , , , , , & show all
Pages 3199-3208 | Published online: 17 May 2021

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi:10.3322/caac.21551
  • Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clinic Proc. 2008;83(5):584–594. doi:10.12677/ACRPO.2016.53004
  • Chaffer CL, San Juan BP, Lim E, et al. Emt, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35(4):645–654. doi:10.1007/s10555-016-9648-7
  • Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15(18). doi:10.1186/s12943-016-0502-x
  • Luo T, Wang L, Wu P, et al. Downregulated vimentin and upregulated e-cadherin in t1 stage non-small-cell lung cancer: does it suggest a mesenchymal-epithelial transition? Neoplasma. 2017;64(5):693–699. doi:10.4149/neo_2017_506
  • Nieszporek A, Skrzypek K, Adamek G, et al. Molecular mechanisms of epithelial to mesenchymal transition in tumor metastasis. Acta Biochimica Polonica. 2019;66(4):509–520. doi:10.18388/abp.2019_2899
  • Konrad L, Dietze R, Riaz MA, et al. Epithelial-mesenchymal transition in endometriosis-when does it happen? J Clin Med. 2020;9(6). doi:10.3390/jcm9061915
  • Sundararajan V, Tan M, Tan TZ. Snai1 recruits hdac1 to suppress snai2 transcription during epithelial to mesenchymal transition. Sci Rep. 2019;9(1):8295. doi:10.1038/s41598-019-44826-8
  • von Burstin J, Eser S, Paul MC, et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a snail/hdac1/hdac2 repressor complex. Gastroenterology. 2009;137(1):361–371, 371.e361-365. doi:10.1053/j.gastro.2009.04.004
  • Zhang Y, Zhang X, Ye M, et al. Fbw7 loss promotes epithelial-to-mesenchymal transition in non-small cell lung cancer through the stabilization of snail protein. Cancer Lett. 2018;419:75–83. doi:10.1016/j.canlet.2018.01.047
  • Smith BN, Odero-Marah VA. The role of snail in prostate cancer. Cell Adh Migr. 2012;6(5):433–441. doi:10.4161/cam.21687
  • Hojo N, Huisken AL, Wang H, et al. Snail knockdown reverses stemness and inhibits tumour growth in ovarian cancer. Sci Rep. 2018;8(1):8704. doi:10.1038/s41598-018-27021-z
  • Yang S, Liu Y, Li MY, et al. Foxp3 promotes tumor growth and metastasis by activating wnt/β-catenin signaling pathway and emt in non-small cell lung cancer. Mol Cancer. 2017;16(1):124. doi:10.1186/s12943-017-0700-1
  • Leng Z, Li Y, Zhou G, et al. Krüppel-like factor 4 regulates stemness and mesenchymal properties of colorectal cancer stem cells through the tgf-β1/smad/snail pathway. J Cell Mol Med. 2020;24(2):1866–1877. doi:10.1111/jcmm.14882
  • Meng Q, Shi S. Abrogation of glutathione peroxidase-1 drives emt and chemoresistance in pancreatic cancer by activating ros-mediated akt/gsk3β/snail signaling. Oncogene. 2018;37(44):5843–5857. doi:10.1038/s41388-018-0392-z
  • Ryu KJ, Park SM, Park SH, et al. P38 stabilizes snail by suppressing dyrk2-mediated phosphorylation that is required for gsk3β-βtrcp-induced snail degradation. Cancer Res. 2019;79(16):4135–4148. doi:10.1158/0008-5472.CAN-19-0049
  • Zhou BP, Deng J, Xia W, et al. Dual regulation of snail by gsk-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6(10):931–940. doi:10.1038/ncb1173
  • Lim SO, Kim H, Jung G. P53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma. FEBS Lett. 2010;584(11):2231–2236. doi:10.1016/j.febslet.2010.04.006
  • Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–299. doi:10.1038/387296a0
  • Hafner A, Bulyk ML, Jambhekar A, et al. The multiple mechanisms that regulate p53 activity and cell fate. 2019;20(4):199–210. doi:10.1038/s41580-019-0110-x
  • Sánchez-González C, Ciudad CJ, Noé V, et al. Health benefits of walnut polyphenols: an exploration beyond their lipid profile. Crit Rev Food Sci Nutr. 2017;57(16):3373–3383. doi:10.1080/10408398.2015.1126218
  • Altieri F, Cairone F, Giamogante F, et al. Influence of ellagitannins extracted by pomegranate fruit on disulfide isomerase pdia3 activity. Nutrients. 2019;11:1. doi:10.3390/nu11010186
  • Evtyugin DD, Magina S. Recent advances in the production and applications of ellagic acid and its derivatives. A review. Molecules. 2020;25(12). doi:10.3390/molecules25122745
  • Olennikov DN, Kashchenko NI, Chirikova NK. In vitro bioaccessibility, human gut microbiota metabolites and hepatoprotective potential of chebulic ellagitannins: a case of padma hepaten® formulation. Nutrients. 2015;7(10):8456–8477. doi:10.3390/nu7105406
  • Jing T, Liao J, Shen K, et al. Protective effect of urolithin a on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food Chem Toxicol. 2019;129(108–114). doi:10.1016/j.fct.2019.04.031
  • Fu X, Gong LF, Wu YF, et al. Urolithin a targets the pi3k/akt/nf-κb pathways and prevents il-1β-induced inflammatory response in human osteoarthritis: in vitro and in vivo studies. Food Funct. 2019;10(9):6135–6146. doi:10.1039/C9FO01332F
  • Totiger TM, Srinivasan S, Jala VR, et al. Urolithin a, a novel natural compound to target pi3k/akt/mtor pathway in pancreatic cancer. Mol Cancer Ther. 2019;18(2):301–311. doi:10.1158/1535-7163.MCT-18-0464
  • Qiu Z, Zhou J, Zhang C, et al. Antiproliferative effect of urolithin a, the ellagic acid-derived colonic metabolite, on hepatocellular carcinoma hepg2.2.15 cells by targeting lin28a/let-7a axis. Braz J Med Biol Res. 2018;, 51(7):e7220. doi:10.1590/1414-431x20187220
  • Norden E, Heiss EH. Urolithin a gains in antiproliferative capacity by reducing the glycolytic potential via the p53/tigar axis in colon cancer cells. Carcinogenesis. 2019;40(1):93–101. doi:10.1093/carcin/bgy158
  • González-Sarrías A, Espín JC, Tomás-Barberán FA, et al. Gene expression, cell cycle arrest and mapk signalling regulation in caco-2 cells exposed to ellagic acid and its metabolites, urolithins. Mol Nutr Food Res. 2009;53(6):686–698. doi:10.1002/mnfr.200800150
  • Li X, Zhang Z, Zhang Y, et al. Upregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16(ink4a) inactivation. J Exp Clin Cancer Res. 2018;37(1):39. doi:10.1186/s13046-018-0701-y
  • Mohammed Saleem YI, Albassam H, Selim M. Urolithin a induces prostate cancer cell death in p53-dependent and in p53-independent manner. Eur J Nutr. 2020;59(4):1607–1618. doi:10.1007/s00394-019-02016-2
  • Ahsan A, RongZheng Y, LiWu X, et al. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci Ther. 2019;25(9):976–986. doi:10.1111/cns.13136
  • Xing J, Tian XJ. Investigating epithelial-to-mesenchymal transition with integrated computational and experimental approaches. Phys Biol. 2019;16(3):031001. doi:10.1088/1478-3975/ab0032
  • Antony J, Thiery JP, Huang RY. Epithelial-to-mesenchymal transition: lessons from development, insights into cancer and the potential of emt-subtype based therapeutic intervention. Phys Biol. 2019;16(4):041004. doi:10.1088/1478-3975/ab157a
  • Pitolli C, Wang Y, Mancini M, et al. Do mutations turn p53 into an oncogene? Int J Mol Sci. 2019;20:24. doi:10.3390/ijms20246241
  • Lee SH, Lee SJ, Chung JY, et al. P53, secreted by k-ras-snail pathway, is endocytosed by k-ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker. Oncogene. 2009;28(19):2005–2014. doi:10.1038/onc.2009.67
  • Sánchez-González C, Ciudad CJ, Izquierdo-Pulido M, et al. Urolithin a causes p21 up-regulation in prostate cancer cells. Eur J Nutr. 2016;55(3):1099–1112. doi:10.1007/s00394-015-0924-z